The Complexity of Satisfiability of Small Depth Circuits

Say that an algorithm solving a Boolean satisfiability problem x on n variables is improved if it takes time poly(|x|)2 cn for some constant c < 1, i.e., if it is exponentially better than a brute force search. We show an improved randomized algorithm for the satisfiability problem for circuits of constant depth d and a linear number of gates cn: for each d and c, the running time is 2(1 ? ?)n where the improvement $\delta\geq 1/O(c^{2^{d-2}-1}\lg^{3\cdot 2^{d-2}-2}c)$, and the constant in the big-Oh depends only on d. The algorithm can be adjusted for use with Grover's algorithm to achieve a run time of $2^{\frac{1-\delta}{2}n}$ on a quantum computer.

[1]  Uwe Schöning A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.

[2]  Michael E. Saks,et al.  Size-depth trade-offs for threshold circuits , 1993, SIAM J. Comput..

[3]  Rainer Schuler,et al.  An algorithm for the satisfiability problem of formulas in conjunctive normal form , 2005, J. Algorithms.

[4]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[5]  Evgeny Dantsin,et al.  An Improved Upper Bound for SAT , 2005, SAT.

[6]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[7]  Russell Impagliazzo,et al.  The complexity of unique k-SAT: an isolation lemma for k-CNFs , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[8]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[9]  Russell Impagliazzo,et al.  A duality between clause width and clause density for SAT , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[10]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[11]  Chris Calabro A Lower Bound on the Size of Series-Parallel Graphs Dense in Long Paths , 2008, Electron. Colloquium Comput. Complex..

[12]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[13]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[14]  Jozef Gruska Mathematical Foundations of Computer Science 1977 , 1977, Lecture Notes in Computer Science.

[15]  Michael E. Saks,et al.  Exponential lower bounds for depth three Boolean circuits , 2000, computational complexity.

[16]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[17]  Michael E. Saks,et al.  Exponential lower bounds for depth 3 Boolean circuits , 1997, STOC '97.