Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences.

The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.

[1]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[2]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[3]  M. Moskovits,et al.  Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. , 2006, Journal of the American Chemical Society.

[4]  Mauro Ferrari,et al.  Serum peptidomic biomarkers for pulmonary metastatic melanoma identified by means of a nanopore-based assay. , 2013, Cancer letters.

[5]  P. Roepstorff,et al.  Graphite powder as an alternative or supplement to reversed‐phase material for desalting and concentration of peptide mixtures prior to matrix‐assisted laser desorption/ionization‐mass spectrometry , 2002, Proteomics.

[6]  T. Südhof,et al.  Neurexins: three genes and 1001 products. , 1998, Trends in genetics : TIG.

[7]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Meiling Li,et al.  Radio frequency plasma polymer coatings for affinity capture MALDI mass spectrometry. , 2005, Analytical chemistry.

[9]  Indira Hewlett,et al.  Nanoparticle-based immunoassays for sensitive and early detection of HIV-1 capsid (p24) antigen. , 2010, The Journal of infectious diseases.

[10]  L. Hood,et al.  Predictive, personalized, preventive, participatory (P4) cancer medicine , 2011, Nature Reviews Clinical Oncology.

[11]  Buddy D Ratner,et al.  Thermoresponsive MALDI probe surfaces as a tool for protein on-probe purification. , 2007, Analytical chemistry.

[12]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[13]  Michael Cascio,et al.  Neuroproteomics: Expression Profiling of the Brain's Proteomes in Health and Disease , 2004, Neurochemical Research.

[14]  E. Petricoin,et al.  Clinical proteomics: translating benchside promise into bedside reality , 2002, Nature Reviews Drug Discovery.

[15]  Rabah Boukherroub,et al.  Laser desorption ionization mass spectrometry of protein tryptic digests on nanostructured silicon plates. , 2012, Journal of proteomics.

[16]  Muhammad Najam-ul-Haq,et al.  Versatile nanocomposites in phosphoproteomics: a review. , 2012, Analytica chimica acta.

[17]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[18]  T. Maniatis,et al.  A Striking Organization of a Large Family of Human Neural Cadherin-like Cell Adhesion Genes , 1999, Cell.

[19]  Federico Torta,et al.  Titanium dioxide coated MALDI plate for on target analysis of phosphopeptides. , 2009, Journal of proteome research.

[20]  Jinghong Li,et al.  Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. , 2010, Analytical chemistry.

[21]  Xiaogang Jiang,et al.  Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis , 2007, Electrophoresis.

[22]  Dianping Tang,et al.  In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. , 2008, Analytical chemistry.

[23]  Christodoulos A. Floudas,et al.  Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database , 2011, Scientific reports.

[24]  Xiangmin Zhang,et al.  Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. , 2007, Journal of chromatography. A.

[25]  Rong Zeng,et al.  Phosphoproteome analysis of mouse liver using immobilized metal affinity purification and linear ion trap mass spectrometry. , 2004, Rapid communications in mass spectrometry : RCM.

[26]  Beatrix Ueberheide,et al.  Protein identification using sequential ion/ion reactions and tandem mass spectrometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[28]  Xiangmin Zhang,et al.  Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. , 2008, Journal of proteome research.

[29]  Alexander I. Archakov Introducing Nanoproteomics, a new section in PROTEOMICS , 2007 .

[30]  G. Siuzdak,et al.  Desorption–ionization mass spectrometry on porous silicon , 1999, Nature.

[31]  H. Yeh,et al.  Single-quantum-dot-based DNA nanosensor , 2005, Nature materials.

[32]  S. Nie,et al.  Nanotechnology applications in cancer. , 2007, Annual review of biomedical engineering.

[33]  John R Yates,et al.  The revolution and evolution of shotgun proteomics for large-scale proteome analysis. , 2013, Journal of the American Chemical Society.

[34]  Zhimin Zhang,et al.  Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. , 2010, Biosensors & bioelectronics.

[35]  Julio Raba,et al.  Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. , 2008, Biosensors & bioelectronics.

[36]  J. Thomson,et al.  Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry , 2009, Proceedings of the National Academy of Sciences.

[37]  Ming Cheng Liu,et al.  Proteomic identification of biomarkers of traumatic brain injury , 2005, Expert review of proteomics.

[38]  Mauro Ferrari,et al.  Fractionation of serum components using nanoporous substrates. , 2006, Bioconjugate chemistry.

[39]  Michael J. Sailor,et al.  Color me sensitive: amplification and discrimination in photonic silicon nanostructures. , 2007, ACS nano.

[40]  Regina Berretta,et al.  Cancer Biomarker Discovery: The Entropic Hallmark , 2010, PloS one.

[41]  Xiaohui Li,et al.  Polymeric nano-assemblies as emerging delivery carriers for therapeutic applications: a review of recent patents. , 2009, Recent patents on nanotechnology.

[42]  Hanfa Zou,et al.  Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. , 2003, Analytical chemistry.

[43]  Mengyi Wang,et al.  Facile synthesis of TiO2/graphene composites for selective enrichment of phosphopeptides. , 2012, Nanoscale.

[44]  G. Zhai,et al.  The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury. , 2013, Biological & pharmaceutical bulletin.

[45]  R. Zubarev The challenge of the proteome dynamic range and its implications for in‐depth proteomics , 2013, Proteomics.

[46]  G. Hortin,et al.  The dynamic range problem in the analysis of the plasma proteome. , 2010, Journal of proteomics.

[47]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[48]  J Pohl,et al.  Distinct proteomic profiles of amphetamine self-administration transitional states , 2005, The Pharmacogenomics Journal.

[49]  H. Klocker,et al.  Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy , 2009, Proceedings of the National Academy of Sciences.

[50]  Ruedi Aebersold,et al.  Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry , 2005, Nature Methods.

[51]  Igor Nabiev,et al.  Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. , 2004, Analytical biochemistry.

[52]  Haiyu Huang,et al.  Monitoring the progression of metastatic breast cancer on nanoporous silica chips , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  Firas Kobeissy,et al.  Proteomics studies of traumatic brain injury. , 2004, International review of neurobiology.

[54]  Lingxin Chen,et al.  Nanomaterial-assisted aptamers for optical sensing. , 2010, Biosensors & bioelectronics.

[55]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[56]  Firas H Kobeissy,et al.  Neuroproteomics and systems biology‐based discovery of protein biomarkers for traumatic brain injury and clinical validation , 2008, Proteomics. Clinical applications.

[57]  Chad A Mirkin,et al.  Multicomponent magnetic nanorods for biomolecular separations. , 2004, Angewandte Chemie.

[58]  Hongjie Dai,et al.  Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. , 2011, Nature communications.

[59]  Junefredo V. Apon,et al.  Clathrate nanostructures for mass spectrometry , 2007, Nature.

[60]  Thomas Laurell,et al.  Porous silicon surfaces – A candidate substrate for reverse protein arrays in cancer biomarker detection , 2007, Electrophoresis.

[61]  Ajeet Kaushik,et al.  Fumed silica nanoparticles–chitosan nanobiocomposite for ochratoxin-A detection , 2009 .

[62]  Yi-Sheng Wang,et al.  Efficient enrichment of phosphopeptides by magnetic TiO2‐coated carbon‐encapsulated iron nanoparticles , 2012, Proteomics.

[63]  Sam A. Johnson,et al.  Phosphoproteomics finds its timing , 2004, Nature Biotechnology.

[64]  Jean-Philippe Charrier,et al.  The current status of clinical proteomics and the use of MRM and MRM3 for biomarker validation , 2012, Expert review of molecular diagnostics.

[65]  Peter Mitchell,et al.  Proteomics retrenches , 2010, Nature Biotechnology.

[66]  Michael J Taussig,et al.  European and international collaboration in affinity proteomics. , 2012, New biotechnology.

[67]  Thomas Franz,et al.  Silicone/graphite coating for on‐target desalting and improved peptide mapping performance of matrix‐assisted laser desorption/ionization‐mass spectrometry targets in proteomic experiments , 2005, Proteomics.

[68]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[69]  J. Yates,et al.  Protein analysis by shotgun/bottom-up proteomics. , 2013, Chemical reviews.

[70]  Wei-Yu Chen,et al.  Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis. , 2009, Journal of biomedical nanotechnology.

[71]  Menno W J Prins,et al.  One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. , 2012, ACS nano.

[72]  E. Mendoza,et al.  Carbon nanotube composite peptide-based biosensors as putative diagnostic tools for rheumatoid arthritis. , 2011, Biosensors & bioelectronics.

[73]  David R Walt,et al.  Analytical chemistry on the femtoliter scale. , 2010, Angewandte Chemie.

[74]  Jiangqin Zhao,et al.  Detection of Anthrax Toxin by an Ultrasensitive Immunoassay Using Europium Nanoparticles , 2009, Clinical and Vaccine Immunology.

[75]  Mark D Johnson,et al.  Proteomic Analysis in the Neurosciences* , 2002, Molecular & Cellular Proteomics.

[76]  Bing Xu,et al.  Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[77]  Tuan Vo-Dinh Protein nanotechnology: the new frontier in biosciences. , 2005, Methods in molecular biology.

[78]  E. Tamiya,et al.  Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. , 2007, Biosensors & bioelectronics.

[79]  C. R. Martin,et al.  Protein capture in silica nanotube membrane 3-D microwell arrays. , 2005, Analytical chemistry.

[80]  Lakshmi A Devi,et al.  Neuroproteomics of the Synapse and Drug Addiction , 2006, Journal of Pharmacology and Experimental Therapeutics.

[81]  Weihong Tan,et al.  Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods. , 2012, Analytical chemistry.

[82]  Muhammad Nawaz Tahir,et al.  Multifunctional polymer-derivatized γ-Fe2O3 nanocrystals as a methodology for the biomagnetic separation of recombinant His-tagged proteins , 2008 .

[83]  David M. Rissin,et al.  Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations , 2010, Nature Biotechnology.

[84]  Yadong Yin,et al.  Mesoporous TiO(2) nanocrystal clusters for selective enrichment of phosphopeptides. , 2010, Analytical chemistry.

[85]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[86]  Shimon Weiss,et al.  Advances in fluorescence imaging with quantum dot bio-probes. , 2006, Biomaterials.

[87]  Ying Ge,et al.  Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. , 2009, Chemical communications.

[88]  Stavroula Sofou,et al.  Liposomes with Triggered Content Release for Cancer Therapy , 2008 .

[89]  Junhong Min,et al.  Signal enhancement in a protein chip array using a 3-D nanosurface. , 2010, Ultramicroscopy.

[90]  Matthias Rainer,et al.  Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. , 2008, Analytical chemistry.

[91]  Nicholas W. Wood,et al.  Neurogenetics: The human genome project – what it really means and where next , 2012 .

[92]  M. J. Roberts,et al.  Engineering of Micro‐ and Nanostructured Surfaces with Anisotropic Geometries and Properties , 2012, Advanced materials.

[93]  D. Planchard,et al.  A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas , 2011, British Journal of Cancer.

[94]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[95]  H. Dai,et al.  Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. , 2008, Biosensors & bioelectronics.

[96]  Katie Cottingham HUPO´s Human Proteome Project: the next big thing? , 2008 .

[97]  Richard C. Becker,et al.  Preoteomics, metabolomics and circulating endothelial progenitor cells in acute coronary syndromes , 2006, Journal of Thrombosis and Thrombolysis.

[98]  R. Dasari,et al.  Ultrasensitive Chemical Analysis by Raman Spectroscopy , 1999 .

[99]  M. Larsen,et al.  Technologies and challenges in large‐scale phosphoproteomics , 2013, Proteomics.

[100]  Shu-hua Chen,et al.  Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. , 2005, Analytical chemistry.

[101]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[102]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[103]  Sebastian Wachsmann-Hogiu,et al.  Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy. , 2010, Journal of biomedical optics.

[104]  H. Nouws,et al.  Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. , 2012, Biosensors & bioelectronics.

[105]  Yu-Chie Chen,et al.  A two-matrix system for MALDI MS analysis of serine phosphorylated peptides concentrated by Fe3O4/Al2O3 magnetic nanoparticles. , 2008, Journal of mass spectrometry : JMS.

[106]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[107]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[108]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[109]  Christopher M Overall,et al.  Proteomics Discovery of Metalloproteinase Substrates in the Cellular Context by iTRAQ™ Labeling Reveals a Diverse MMP-2 Substrate Degradome*S , 2007, Molecular & Cellular Proteomics.

[110]  Kian Ping Loh,et al.  Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. , 2010, Journal of the American Chemical Society.

[111]  Isabel Feuerstein,et al.  Phosphoproteomic analysis using immobilized metal ion affinity chromatography on the basis of cellulose powder , 2005, Proteomics.

[112]  M. Ferrari,et al.  Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein. , 2010, ACS nano.

[113]  Bo Zhang,et al.  Carbon nanotubes in cancer diagnosis and therapy. , 2010, Biochimica et biophysica acta.

[114]  G Ulrich Nienhaus,et al.  Zwitterionic biocompatible quantum dots for wide pH stability and weak nonspecific binding to cells. , 2009, ACS nano.

[115]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[116]  Gabriel A Silva,et al.  Characterization of the functional binding properties of antibody conjugated quantum dots. , 2007, Nano letters.

[117]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[118]  Ulrich Stelzl,et al.  Dual Coordination of Post Translational Modifications in Human Protein Networks , 2013, PLoS Comput. Biol..

[119]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[120]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[121]  Bing Xu,et al.  Biofunctional Magnetic Nanoparticles for Protein Separation and Pathogen Detection , 2006 .

[122]  Subinoy Rana,et al.  Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. , 2009, Nature chemistry.

[123]  Xianyin Lai,et al.  Reproducible method to enrich membrane proteins with high purity and high yield for an LC‐MS/MS approach in quantitative membrane proteomics , 2013, Electrophoresis.

[124]  Bing Xu,et al.  Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. , 2004, Journal of the American Chemical Society.

[125]  Ajeet Kaushik,et al.  A nanostructured cerium oxide film-based immunosensor for mycotoxin detection , 2009, Nanotechnology.

[126]  S. Achilefu,et al.  Perspectives and potential applications of nanomedicine in breast and prostate cancer , 2013, Medicinal research reviews.

[127]  David R. Walt,et al.  Very High Density Sensing Arrays , 2008 .

[128]  Chad A Mirkin,et al.  A fluorophore-based bio-barcode amplification assay for proteins. , 2006, Small.

[129]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[130]  Sriram Natarajan,et al.  Review: Micro- and nanostructured surface engineering for biomedical applications , 2013 .

[131]  Thomas J Webster,et al.  Nanomedicine: what’s in a definition? , 2006, International journal of nanomedicine.

[132]  J. Thome,et al.  Proteomics - Biomarkerforschung in der Psychiatrie , 2007, Fortschritte der Neurologie-Psychiatrie.

[133]  P. Solanki,et al.  Nanostructured zinc oxide platform for mycotoxin detection. , 2010, Bioelectrochemistry.

[134]  C. Mirkin,et al.  Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[135]  Hongzhi Wang,et al.  Continuous high-throughput phosphopeptide enrichment using microfluidic channels modified with aligned ZnO/TiO2 nanorod arrays , 2011, Biomedical microdevices.

[136]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[137]  Shang-Yu Huang,et al.  Nano-titanium dioxide composites for the enrichment of phosphopeptides. , 2006, Journal of chromatography. A.

[138]  Stavros J. Hamodrakas,et al.  A Hidden Markov Model method, capable of predicting and discriminating β-barrel outer membrane proteins , 2004, BMC Bioinformatics.

[139]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[140]  Andrew Emili,et al.  Membrane proteomics by high performance liquid chromatography–tandem mass spectrometry: Analytical approaches and challenges , 2013, Proteomics.

[141]  Nicolas H Voelcker,et al.  Porous silicon biosensors on the advance. , 2009, Trends in biotechnology.

[142]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[143]  M. Mann,et al.  4. Proteomic Analysis of Posttranslational Modifications , 2013 .

[144]  James McBride,et al.  Targeting cell surface receptors with ligand-conjugated nanocrystals. , 2002, Journal of the American Chemical Society.

[145]  Chad A Mirkin,et al.  Nanoparticle-Based Biobarcode Amplification Assay (BCA) for Sensitive and Early Detection of Human Immunodeficiency Type 1 Capsid (p24) Antigen , 2007, Journal of acquired immune deficiency syndromes.

[146]  Steven A Carr,et al.  Protein biomarker discovery and validation: the long and uncertain path to clinical utility , 2006, Nature Biotechnology.

[147]  James F Rusling,et al.  Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. , 2012, Analytical chemistry.

[148]  A. Ottens,et al.  The methodology of neuroproteomics. , 2009, Methods in molecular biology.

[149]  Vincent M Rotello,et al.  Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. , 2007, Nature nanotechnology.

[150]  Michael J Sailor,et al.  Capture, Enrichment, and Mass Spectrometric Detection of Low‐Molecular‐Weight Biomarkers with Nanoporous Silicon Microparticles , 2012, Advanced healthcare materials.

[151]  Florian Gnad,et al.  Large-scale Proteomics Analysis of the Human Kinome , 2009, Molecular & Cellular Proteomics.

[152]  Jens Schindler,et al.  Neuroproteomics – the tasks lying ahead , 2006, Electrophoresis.

[153]  Yunki Y. Yau,et al.  Current Status and Advances in Quantitative Proteomic Mass Spectrometry , 2013, International journal of proteomics.

[154]  Weihong Tan,et al.  Laser desorption ionization mass spectrometry on silicon nanowell arrays. , 2010, Analytical chemistry.

[155]  A. Rasooly,et al.  Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food. , 2008, International journal of food microbiology.

[156]  Daniel Figeys,et al.  Proteomics technology in systems biology. , 2006, Molecular bioSystems.

[157]  Chad A Mirkin,et al.  Control of nanoparticle assembly by using DNA-modified diatom templates. , 2004, Angewandte Chemie.

[158]  M. Engelhard,et al.  Functionalized TiO2 nanoparticles for use for in situ anion immobilization. , 2005, Environmental science & technology.

[159]  Yukihiro Ozaki,et al.  Adsorption of S—S Containing Proteins on a Colloidal Silver Surface Studied by Surface-Enhanced Raman Spectroscopy , 2004, Applied spectroscopy.

[160]  Cuichen Wu,et al.  A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions. , 2012, Journal of the American Chemical Society.

[161]  Thomas Laurell,et al.  High‐speed biomarker identification utilizing porous silicon nanovial arrays and MALDI‐TOF mass spectrometry , 2006, Electrophoresis.

[162]  James F. Rusling,et al.  Nanoscience-Based Electrochemical Sensors and Arrays for Detection of Cancer Biomarker Proteins , 2013 .

[163]  Wei Gao,et al.  Highly selective capture of phosphopeptides using a nano titanium dioxide-multiwalled carbon nanotube nanocomposite. , 2012, Analytical biochemistry.

[164]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[165]  L. Santambrogio,et al.  An Expanded Self-Antigen Peptidome Is Carried by the Human Lymph As Compared to the Plasma , 2010, PloS one.

[166]  B. Trathnigg,et al.  Characterization of poly(ethylene glycol)-b-poly(epsilon-caprolactone) by two-dimensional liquid chromatography. , 2009, Journal of separation science.

[167]  John H T Luong,et al.  Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. , 2008, ACS nano.

[168]  M. Ferrari,et al.  Mesoporous silicon nanotechnology for cancer application , 2009, Oncologie.

[169]  J. Sunner,et al.  Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. , 1995, Analytical chemistry.

[170]  Wuh-Liang Hwu,et al.  Screening assay of very long chain fatty acids in human plasma with multiwalled carbon nanotube-based surface-assisted laser desorption/ionization mass spectrometry. , 2010, Analytical chemistry.

[171]  M Karas,et al.  Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. , 2000, Journal of mass spectrometry : JMS.

[172]  Naomi J Halas,et al.  Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates. , 2005, Journal of the American Chemical Society.

[173]  Hyojik Yang,et al.  Enrichment of phosphopeptides using bare magnetic particles. , 2008, Rapid communications in mass spectrometry : RCM.

[174]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[175]  Xiangmin Zhang,et al.  Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. , 2007, Journal of proteome research.

[176]  Oscar Yanes,et al.  Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. , 2009, Analytical chemistry.

[177]  E. Wang,et al.  Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. , 2011, Talanta.

[178]  Firas H Kobeissy,et al.  Psychoproteomic analysis of rat cortex following acute methamphetamine exposure. , 2008, Journal of proteome research.

[179]  Jin Ouyang,et al.  Novel application of carbon nanotubes for improving resolution in detecting human serum proteins with native polyacrylamide gel electrophoresis. , 2009, Nano letters.

[180]  S. Grant,et al.  Proteomics in postgenomic neuroscience: the end of the beginning , 2004, Nature Neuroscience.

[181]  Holger Husi,et al.  Proteomics of the nervous system , 2001, Trends in Neurosciences.

[182]  Sandeep Choudhary,et al.  Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. , 2011, Journal of proteomics.

[183]  Chad A Mirkin,et al.  The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. , 2009, ACS nano.

[184]  Robert E Campbell,et al.  Designs and applications of fluorescent protein-based biosensors. , 2010, Current opinion in chemical biology.

[185]  Hanno Steen,et al.  Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. , 2002, Trends in biotechnology.

[186]  N. Anderson,et al.  The Human Plasma Proteome , 2002, Molecular & Cellular Proteomics.

[187]  R. Hayes,et al.  Neuroproteomics in neurotrauma. , 2006, Mass spectrometry reviews.

[188]  Gilbert S. Omenn,et al.  The HUPO Human Proteome Project (HPP), a Global Health Research Collaboration , 2012, Central Asian journal of global health.

[189]  Hedi Mattoussi,et al.  Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy , 2004, Nature Medicine.

[190]  Jing Liu,et al.  Psychiatric research: psychoproteomics, degradomics and systems biology , 2008, Expert review of proteomics.

[191]  Raymond P. Molloy,et al.  In vivo multiphoton microscopy of deep brain tissue. , 2004, Journal of neurophysiology.

[192]  Kathryn Saatman,et al.  Application of proteomics technology to the field of neurotrauma. , 2003, Journal of neurotrauma.

[193]  J. Phair,et al.  Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method. , 2008, Nanomedicine.

[194]  M. Mann,et al.  Proteomic analysis of post-translational modifications , 2003, Nature Biotechnology.

[195]  Hongjie Dai,et al.  Protein microarrays with carbon nanotubes as multicolor Raman labels , 2008, Nature Biotechnology.

[196]  Martin R Larsen,et al.  Improved Detection of Hydrophilic Phosphopeptides Using Graphite Powder Microcolumns and Mass Spectrometry , 2004, Molecular & Cellular Proteomics.

[197]  Nengqin Jia,et al.  Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain , 2012, Nanotechnology.

[198]  Ramasamy Manoharan,et al.  Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS) , 1998 .

[199]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[200]  Moungi G Bawendi,et al.  Compact biocompatible quantum dots functionalized for cellular imaging. , 2008, Journal of the American Chemical Society.

[201]  Weihong Tan,et al.  Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. , 2011, Analytical chemistry.

[202]  Hendrik Neubert,et al.  Online high-flow peptide immunoaffinity enrichment and nanoflow LC-MS/MS: assay development for total salivary pepsin/pepsinogen. , 2010, Clinical chemistry.

[203]  Jean-Paul Noben,et al.  Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients , 2004, Proteomics.

[204]  Yan Liu,et al.  New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2'-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations. , 2005, Biosensors & bioelectronics.

[205]  Stephen Schrettl,et al.  Nanostructured carbonaceous materials from molecular precursors. , 2010, Angewandte Chemie.

[206]  Yu-Chie Chen,et al.  Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. , 2005, Analytical chemistry.

[207]  Alexander Leitner,et al.  Phosphopeptide enrichment using metal oxide affinity chromatography , 2010 .

[208]  C. O’Sullivan,et al.  Detection of antigliadin autoantibodies in celiac patient samples using a cyclodextrin-based supramolecular biosensor. , 2011, Analytical chemistry.

[209]  F. Collins,et al.  The Human Genome Project: Lessons from Large-Scale Biology , 2003, Science.

[210]  Ss Lavhekar,et al.  by High Performance Liquid Chromatography by High Performance Liquid Chromatography by High Performance Liquid Chromatography by High Performance Liquid Chromatography by High Performance Liquid Chromatography , 2006 .

[211]  Gregory L Baker,et al.  Applications of polymer brushes in protein analysis and purification. , 2009, Annual review of analytical chemistry.

[212]  Lin Guo,et al.  Preparation of a TiO2 nanoparticle-deposited capillary column by liquid phase deposition and its application in phosphopeptide analysis. , 2008, Journal of chromatography. A.

[213]  R. Aebersold,et al.  Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS)* , 2012, Molecular & Cellular Proteomics.

[214]  Hye Kyong Kweon,et al.  Metal oxide-based enrichment combined with gas-phase ion-electron reactions for improved mass spectrometric characterization of protein phosphorylation. , 2008, Journal of proteome research.

[215]  David R Walt,et al.  Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. , 2006, Nano letters.

[216]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[217]  Marco Giannetto,et al.  A voltammetric immunosensor based on nanobiocomposite materials for the determination of alpha-fetoprotein in serum. , 2011, Biosensors & bioelectronics.

[218]  F. Ahmed Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. , 2009, Journal of separation science.

[219]  Xiangmin Zhang,et al.  Preparation of sandwich‐structured graphene/mesoporous silica composites with C8‐modified pore wall for highly efficient selective enrichment of endogenous peptides for mass spectrometry analysis , 2012, Proteomics.

[220]  M. Larsen,et al.  Highly selective enrichment of phosphorylated peptides using titanium dioxide , 2006, Nature Protocols.

[221]  Weidong Zhou,et al.  Core-Shell Hydrogel Particles Harvest, Concentrate and Preserve Labile Low Abundance Biomarkers , 2009, PloS one.

[222]  Shuming Nie,et al.  Multiplexed detection and characterization of rare tumor cells in Hodgkin's lymphoma with multicolor quantum dots. , 2010, Analytical chemistry.

[223]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[224]  Shana O Kelley,et al.  Protein detection using arrayed microsensor chips: tuning sensor footprint to achieve ultrasensitive readout of CA-125 in serum and whole blood. , 2011, Analytical chemistry.

[225]  Yingming Zhao,et al.  Modification‐specific proteomics: Strategies for characterization of post‐translational modifications using enrichment techniques , 2009, Proteomics.

[226]  Angus C. Nairn,et al.  Recent advances in neuroproteomics and potential application to studies of drug addiction , 2004, Neuropharmacology.

[227]  Anthony D Whetton,et al.  Proteomic Analysis of Chronic Lymphocytic Leukemia Subtypes with Mutated or Unmutated Ig VH Genes* , 2003, Molecular & Cellular Proteomics.

[228]  Xu-Wei Chen,et al.  Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. , 2013, Bioconjugate chemistry.

[229]  Chad A. Mirkin,et al.  Erratum: The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange (Nature Protocols (2006) vol. 1 (324-336) 10.1038/nprot.2006.51) , 2006 .

[230]  Xiang Yun,et al.  Nanoparticles for Targeted Delivery of Antioxidant Enzymes to the Brain after Cerebral Ischemia and Reperfusion Injury , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[231]  M. Mann,et al.  Is Proteomics the New Genomics? , 2007, Cell.

[232]  Shana O Kelley,et al.  Nanostructuring of sensors determines the efficiency of biomolecular capture. , 2010, Analytical chemistry.

[233]  Kenji Yamamoto,et al.  Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. , 2003, Biochemical and biophysical research communications.

[234]  Catherine Shaffer Mass Spec Makes Its Way into the Clinic , 2011 .

[235]  Prem Gurnani,et al.  Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. , 2005, Bioconjugate chemistry.

[236]  Weihong Tan,et al.  Aptamer-conjugated multifunctional nanoflowers as a platform for targeting, capture, and detection in laser desorption ionization mass spectrometry. , 2013, ACS nano.

[237]  A. Heck,et al.  Next-generation proteomics: towards an integrative view of proteome dynamics , 2012, Nature Reviews Genetics.

[238]  Weidong Zhou,et al.  Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. , 2008, Nano letters.

[239]  J. Marty,et al.  Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. , 2011, Biosensors & bioelectronics.

[240]  Yan Liu,et al.  A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy. , 2004, Bioelectrochemistry.

[241]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[242]  Igor L. Medintz,et al.  Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. , 2009, Journal of the American Chemical Society.

[243]  Arben Merkoçi,et al.  Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer's disease biomarker screening. , 2012, Analytical chemistry.

[244]  Xiaoyuan Chen,et al.  Nanotheranostics for personalized medicine , 2013, Expert review of molecular diagnostics.