Shattering versus metastability in spin glasses

Our goal in this work is to better understand the relationship between replica symmetry breaking, shattering, and metastability. To this end, we study the static and dynamic behaviour of spherical pure p-spin glasses above the replica symmetry breaking temperature Ts. In this regime, we find that there are at least two distinct temperatures related to non-trivial behaviour. First we prove that there is a regime of temperatures in which the spherical p-spin model exhibits a shattering phase. Our results holds in a regime above but near Ts. We then find that metastable states exist up to an even higher temperature TBBM as predicted by Barrat–Burioni–Mézard which is expected to be higher than the phase boundary for the shattering phase Td < TBBM . We develop this work by first developing a Thouless–Anderson–Palmer decomposition which builds on the work of Subag. We then present a series of questions and conjectures regarding the sharp phase boundaries for shattering and slow mixing.

[1]  A. Faggionato,et al.  Spectral characterization of aging: The REM-like trap model , 2004, math/0508486.

[2]  Eliran Subag,et al.  The free energy of spherical pure p-spin models: computation from the TAP approach , 2021, Probability Theory and Related Fields.

[3]  L. Arguin A remark on the infinite-volume Gibbs measures of spin glasses , 2008, 0809.0683.

[4]  Antonio Auffinger,et al.  The number of saddles of the spherical $p$-spin model , 2020, 2007.09269.

[5]  M. Talagrand On Guerra's broken replica-symmetry bound , 2003 .

[6]  Limiting Dynamics for Spherical Models of Spin Glasses at High Temperature , 2006, math/0609546.

[7]  Andrea Montanari,et al.  Optimization of the Sherrington-Kirkpatrick Hamiltonian , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[8]  Bálint Virág,et al.  Local algorithms for independent sets are half-optimal , 2014, ArXiv.

[9]  Wei-Kuo Chen The Aizenman-Sims-Starr scheme and Parisi formula for mixed p-spin spherical models , 2012, 1204.5115.

[10]  Federico Ricci-Tersenghi,et al.  On the solution-space geometry of random constraint satisfaction problems , 2006, STOC '06.

[11]  Eliran Subag,et al.  The complexity of spherical p-spin models - a second moment approach , 2015, 1504.02251.

[12]  J. Černý,et al.  Aging of the Metropolis dynamics on the random energy model , 2015, 1502.04535.

[13]  P. Mathieu Convergence to Equilibrium for Spin Glasses , 2000 .

[14]  Marco Baity-Jesi,et al.  Activated dynamics: An intermediate model between the random energy model and the p-spin model. , 2018, Physical review. E.

[15]  G. Parisi,et al.  Recipes for metastable states in spin glasses , 1995 .

[16]  Allan Sly,et al.  Reconstruction of colourings without freezing , 2016, 1610.02770.

[17]  A. Cavagna,et al.  Spin-glass theory for pedestrians , 2005, cond-mat/0505032.

[18]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .

[19]  Andrea Montanari,et al.  Optimization of mean-field spin glasses , 2020, The Annals of Probability.

[20]  D. Stroock,et al.  Logarithmic Sobolev inequalities and stochastic Ising models , 1987 .

[21]  Cugliandolo,et al.  Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. , 1993, Physical review letters.

[22]  G. B. Arous,et al.  Universality of the REM for Dynamics of Mean-Field Spin Glasses , 2007, 0706.2135.

[23]  S. Kak Information, physics, and computation , 1996 .

[24]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[25]  David Belius,et al.  The TAP–Plefka Variational Principle for the Spherical SK Model , 2018, Communications in Mathematical Physics.

[26]  P. Mathieu,et al.  Aging of asymmetric dynamics on the random energy model , 2012, 1212.5117.

[27]  A. Dembo,et al.  Dynamics for Spherical Spin Glasses: Disorder Dependent Initial Conditions , 2019, Journal of Statistical Physics.

[28]  Dmitry Panchenko,et al.  The Parisi formula for mixed $p$-spin models , 2011, 1112.4409.

[29]  Madhu Sudan,et al.  Limits of local algorithms over sparse random graphs , 2013, ITCS.

[30]  F. Guerra Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.

[31]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[32]  Aukosh Jagannath,et al.  Dynamics of mean field spin glasses on short and long timescales , 2019, Journal of Mathematical Physics.

[33]  Eliran Subag,et al.  Free energy landscapes in spherical spin glasses , 2018, 1804.10576.

[34]  A. Dembo,et al.  Cugliandolo-Kurchan equations for dynamics of Spin-Glasses , 2004, math/0409273.

[35]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[36]  A. Crisanti,et al.  The sphericalp-spin interaction spin glass model: the statics , 1992 .

[37]  E. Bolthausen,et al.  On Ruelle's Probability Cascades and an Abstract Cavity Method , 1998 .

[38]  M. Mézard,et al.  Out of equilibrium dynamics in spin-glasses and other glassy systems , 1997, cond-mat/9702070.

[39]  J. Kurchan,et al.  Weak ergodicity breaking in mean-field spin-glass models , 1994, cond-mat/9403040.

[40]  Andrea Montanari,et al.  Factor models on locally tree-like graphs , 2011, ArXiv.

[41]  G. B. Arous,et al.  Algorithmic thresholds for tensor PCA , 2018, The Annals of Probability.

[42]  Justin Ko Free energy of multiple systems of spherical spin glasses with constrained overlaps , 2018, 1806.09772.

[43]  Ronen Eldan,et al.  A spectral condition for spectral gap: fast mixing in high-temperature Ising models , 2020, Probability Theory and Related Fields.

[44]  G. B. Arous,et al.  Geometry and Temperature Chaos in Mixed Spherical Spin Glasses at Low Temperature: The Perturbative Regime , 2018, Communications on Pure and Applied Mathematics.

[45]  M. A. Virasoro,et al.  Barriers and metastable states as saddle points in the replica approach , 1993 .

[46]  LETTER TO THE EDITOR: Dynamics within metastable states in a mean-field spin glass , 1995, cond-mat/9511089.

[47]  M. Talagrand Free energy of the spherical mean field model , 2006 .

[48]  Will Perkins,et al.  Bethe States of Random Factor Graphs , 2017, Communications in Mathematical Physics.

[49]  T. Bodineau,et al.  A very simple proof of the LSI for high temperature spin systems , 2017, Journal of Functional Analysis.

[50]  E. Bolthausen An Iterative Construction of Solutions of the TAP Equations for the Sherrington–Kirkpatrick Model , 2012, 1201.2891.

[51]  G. Ben Arous,et al.  Spectral Gap Estimates in Mean Field Spin Glasses , 2017, 1705.04243.

[52]  Dmitry Panchenko,et al.  Generalized TAP Free Energy , 2018, Communications on Pure and Applied Mathematics.

[53]  Reza Gheissari,et al.  Bounding Flows for Spherical Spin Glass Dynamics , 2018, Communications in Mathematical Physics.

[54]  Anton Bovier,et al.  Aging in the random energy model. , 2002, Physical review letters.

[55]  Eliran Subag,et al.  The geometry of the Gibbs measure of pure spherical spin glasses , 2016, 1604.00679.

[56]  Antonio Auffinger,et al.  Complexity of random smooth functions on the high-dimensional sphere , 2011, 1110.5872.

[57]  T. R. Kirkpatrick,et al.  p-spin-interaction spin-glass models: Connections with the structural glass problem. , 1987, Physical review. B, Condensed matter.

[58]  Allan Sly,et al.  Proof of the Satisfiability Conjecture for Large k , 2014, STOC.

[59]  Antonio Auffinger,et al.  Random Matrices and Complexity of Spin Glasses , 2010, 1003.1129.

[60]  Reza Gheissari,et al.  On the spectral gap of spherical spin glass dynamics , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[61]  Aukosh Jagannath,et al.  Approximate Ultrametricity for Random Measures and Applications to Spin Glasses , 2014, 1412.7076.

[62]  Allan Sly,et al.  Maximum independent sets on random regular graphs , 2013, 1310.4787.

[63]  V. Gayrard Aging in Metropolis dynamics of the REM: a proof , 2016, Probability Theory and Related Fields.

[64]  Antonio Auffinger,et al.  On properties of Parisi measures , 2013, 1303.3573.

[65]  Dmitry Panchenko,et al.  The Parisi ultrametricity conjecture , 2011, 1112.1003.

[66]  Antonio Auffinger,et al.  Thouless–Anderson–Palmer equations for generic $p$-spin glasses , 2016, The Annals of Probability.

[67]  M. Aizenman,et al.  Extended variational principle for the Sherrington-Kirkpatrick spin-glass model , 2003 .

[68]  Aukosh Jagannath,et al.  Bounds on the complexity of Replica Symmetry Breaking for spherical spin glasses , 2016, 1607.02134.