Emergent planarity in two-dimensional Ising models with finite-range Interactions

The known Pfaffian structure of the boundary spin correlations, and more generally order–disorder correlation functions, is given a new explanation through simple topological considerations within the model’s random current representation. This perspective is then employed in the proof that the Pfaffian structure of boundary correlations emerges asymptotically at criticality in Ising models on $${\mathbb {Z}}^2$$Z2 with finite-range interactions. The analysis is enabled by new results on the stochastic geometry of the corresponding random currents. The proven statement establishes an aspect of universality, seen here in the emergence of fermionic structures in two dimensions beyond the solvable cases.

[1]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[2]  RSW and Box-Crossing Property for Planar Percolation , 2016 .

[3]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[4]  H. Duminil-Copin,et al.  Convergence of Ising interfaces to Schramm's SLE curves , 2013, 1312.0533.

[5]  M. Aizenman,et al.  Geometric analysis of ϕ 4 fields and Ising models , 1982 .

[6]  Robert B. Griffiths,et al.  Correlations in Ising Ferromagnets. I , 1967 .

[7]  K. Alexander,et al.  Excursions and Local Limit Theorems for Bessel-like Random Walks , 2009, 0912.4550.

[8]  The phase transitions of the random-cluster and Potts models on slabs with $q \geq 1$ are sharp , 2016, 1604.01299.

[9]  H. Duminil-Copin,et al.  On the double random current nesting field , 2017, Probability Theory and Related Fields.

[10]  V. Tassion Crossing probabilities for Voronoi percolation , 2014, 1410.6773.

[11]  David Cimasoni,et al.  Revisiting the combinatorics of the 2D Ising model , 2015, 1507.08242.

[12]  A. Giuliani,et al.  The scaling limit of the energy correlations in non integrable Ising models , 2012, 1204.4040.

[13]  H. Duminil-Copin,et al.  Crossing probabilities in topological rectangles for the critical planar FK-Ising model , 2013, 1312.7785.

[14]  B. L. Waerden Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen , 1941 .

[15]  S. Sherman,et al.  Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field , 1970 .

[16]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[17]  Pierre Nolin,et al.  Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model , 2011 .

[18]  M. Lis The Planar Ising Model and Total Positivity , 2016, 1606.06068.

[19]  Michael Aizenman,et al.  On the critical behavior of the magnetization in high-dimensional Ising models , 1986 .

[20]  R. Griffiths Correlations in Ising Ferromagnets. II. External Magnetic Fields , 1967 .

[21]  Michael Aizenman,et al.  Geometric analysis of φ4 fields and Ising models. Parts I and II , 1982 .

[22]  The phase transitions of the random-cluster and Potts models on slabs with q ≥ 1 are sharp Ioan Manolescu and Aran Raoufi November , 2018 .

[23]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[24]  Clément Hongler,et al.  The scaling limit of critical Ising interfaces is $\mathrm{CLE}_{3}$ , 2016, The Annals of Probability.

[25]  Elliott H. Lieb,et al.  Two-Dimensional Ising Model as a Soluble Problem of Many Fermions , 1964 .

[26]  L. Kadanoff Spin-spin correlations in the two-dimensional ising model , 1966 .

[27]  V. Sidoravicius,et al.  Absence of Infinite Cluster for Critical Bernoulli Percolation on Slabs , 2014, 1401.7130.

[28]  J. Chayes,et al.  Discontinuity of the magnetization in one-dimensional 1/¦x−y¦2 Ising and Potts models , 1988 .

[29]  Critical Percolation and the Minimal Spanning Tree in Slabs , 2015, 1512.09107.

[30]  Svante Janson,et al.  Random Even Graphs , 2007, Electron. J. Comb..

[31]  Barry Simon,et al.  Correlation inequalities and the decay of correlations in ferromagnets , 1980 .

[32]  R. Baxter,et al.  Solvable eight-vertex model on an arbitrary planar lattice , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[33]  P. W. Kasteleyn,et al.  Correlation-function identities for general planar Ising systems , 1978 .

[34]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[35]  M. Aizenman,et al.  The phase transition in a general class of Ising-type models is sharp , 1987 .

[36]  S. Smirnov,et al.  Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.

[37]  Chen Ning Yang,et al.  The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .

[38]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[39]  Vladas Sidoravicius,et al.  Random Currents and Continuity of Ising Model’s Spontaneous Magnetization , 2013, 1311.1937.

[40]  L. Ko Spin-spin correlation in the two-dimensional Ising model with linear defects and fredholm equations , 1988 .

[41]  M. Aizenman,et al.  Critical exponents for long-range interactions , 1988 .

[42]  B. McCoy,et al.  The Two-Dimensional Ising Model , 1973 .

[43]  W. Werner,et al.  A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field , 2015, 1511.05524.

[44]  Tai Tsun Wu,et al.  Ising Field Theory: Quadratic Difference Equations for the n -Point Green's Functions on the Lattice , 1981 .

[45]  Correlation inequalities for Ising ferromagnets with symmetries , 1977 .

[46]  M. Aizenman,et al.  Kac–Ward Formula and Its Extension to Order–Disorder Correlators Through a Graph Zeta Function , 2017, Journal of Statistical Physics.

[47]  E. Lieb A refinement of Simon's correlation inequality , 1980 .

[48]  L. Russo A note on percolation , 1978 .

[49]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[50]  H. S. Green,et al.  New Solution of the Ising Problem for a Rectangular Lattice , 1960 .

[51]  H. Duminil-Copin,et al.  A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.

[52]  H. Duminil-Copin Lectures on the Ising and Potts Models on the Hypercubic Lattice , 2017, 1707.00520.

[53]  B. Kaufman Crystal Statistics: II. Partition Function Evaluated by Spinor Analysis. III. Short-Range Order in a Binary Ising Lattice. , 1949 .

[54]  A. Messager,et al.  Correlation functions and boundary conditions in the ising ferromagnet , 1977 .

[55]  Leo P. Kadanoff,et al.  Determination of an Operator Algebra for the Two-Dimensional Ising Model , 1971 .