Time-dependent Optical Spectroscopy of GRB 010222: Clues to the Gamma-Ray Burst Environment

We present sequential optical spectra of the afterglow of GRB 010222 obtained 1 day apart using the Low-Resolution Imaging Spectrometer (LRIS) and the Echellette Spectrograph and Imager (ESI) on the Keck Telescopes. Three low-ionization absorption systems are spectroscopically identified at z1 = 1.47688, z2 = 1.15628, and z3 = 0.92747. The higher resolution ESI spectrum reveals two distinct components in the highest redshift system at z1a = 1.47590 and z1b = 1.47688. We interpret the z1b = 1.47688 system as an absorption feature of the disk of the host galaxy of GRB 010222. The best-fitted power-law optical continuum and [Zn/Cr] ratio imply low dust content or a local gray dust component near the burst site. In addition, we do not detect strong signatures of vibrationally excited states of H2. If the gamma-ray burst took place in a superbubble or young stellar cluster, there are no outstanding signatures of an ionized absorber either. Analysis of the spectral time dependence at low resolution shows no significant evidence for absorption-line variability. This lack of variability is confronted with time-dependent photoionization simulations designed to apply the observed flux from GRB 010222 to a variety of assumed atomic gas densities and cloud radii. The absence of time dependence in the absorption lines implies that high-density environments are disfavored. In particular, if the GRB environment was dust free, its density was unlikely to exceed nH I = 102 cm-3. If depletion of metals onto dust is similar to Galactic values or less than solar abundances are present, then nH I ≥ 2 × 104 cm-3 is probably ruled out in the immediate vicinity of the burst.

[1]  T. Piran,et al.  Variability in GRBs - A Clue , 1997, astro-ph/9701002.

[2]  Titus J. Galama,et al.  High Column Densities and Low Extinctions of Gamma-Ray Bursts: Evidence for Hypernovae and Dust Destruction , 2000, astro-ph/0009367.

[3]  Re'em Sari,et al.  On the Synchrotron Self-Compton Emission from Relativistic Shocks and Its Implications for Gamma-Ray Burst Afterglows , 2000, astro-ph/0005253.

[4]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[5]  D. York,et al.  Interstellar Abundances in the Magellanic Clouds. II. The Line of Sight to SN 1987A in the Large Magellanic Cloud , 1999 .

[6]  C. Steidel,et al.  Si and Mn Abundances in Damped Lyα Systems with Low Dust Content , 1999, astro-ph/9910131.

[7]  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[8]  L. Piro,et al.  Broadband Observations of the Afterglow of GRB 000926: Observing the Effect of Inverse Compton Scattering and Evidence for a High-Density Environment , 2001 .

[9]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[10]  James E. Rhoads,et al.  X-Ray Destruction of Dust along the Line of Sight to γ-Ray Bursts , 2001, astro-ph/0106343.

[11]  Chris L. Fryer,et al.  Black Hole-Neutron Star Mergers as Central Engines of Gamma-Ray Bursts , 1999, The Astrophysical journal.

[12]  Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts , 1998, astro-ph/9808094.

[13]  Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars , 1998, astro-ph/9809307.

[14]  L Piro,et al.  Observation of X-ray lines from a gamma-ray burst (GRB991216): evidence of moving ejecta from the progenitor. , 2000, Science.

[15]  Vietri,et al.  Supranova Events from Spun-up Neutron Stars: An Explosion in Search of an Observation. , 1999, The Astrophysical journal.

[16]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[17]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[18]  Ray W. Klebesadel,et al.  Observations of Gamma-Ray Bursts of Cosmic Origin , 1973 .

[19]  B. Draine,et al.  Dust Sublimation by Gamma-ray Bursts and Its Implications , 1999, astro-ph/9909020.

[20]  Daniel E. Reichart,et al.  Evidence for a Molecular Cloud Origin of Gamma-ray Bursts: Implications for the nature of star formation in the universe , 2002 .

[21]  Michael G. Burton,et al.  The Discovery of Hot Stars near the Galactic Center Thermal Radio Filaments , 1996 .

[22]  D. Bersier,et al.  Rapid UBVRI Follow-up of the Highly Collimated Optical Afterglow of GRB 010222 , 2001, astro-ph/0104329.

[23]  H. Nicklas,et al.  VLT Spectroscopy of GRB 990510 and GRB 990712: Probing the Faint and Bright Ends of the Gamma-Ray Burst Host Galaxy Population , 2000, astro-ph/0009025.

[24]  C. Steidel,et al.  Mg II absorption in the spectra of 103 QSOs : implications for the evolution of gas in high-redshift galaxies , 1992 .

[25]  National Astronomical Observatory of Japan,et al.  Chandra Observations of Diffuse X-Rays from the Sagittarius B2 Cloud , 2001, astro-ph/0105273.

[26]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[27]  Jane C. Charlton,et al.  The Population of Weak Mg II Absorbers. I. A Survey of 26 QSO HIRES/Keck Spectra* ** , 1999 .

[28]  M. Rees,et al.  Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts , 1996, astro-ph/9606043.

[29]  M. Samland Modeling the Evolution of Disk Galaxies. II. Yields of Massive Stars , 1998 .

[30]  Preexisting superbubbles as the sites of gamma-ray bursts , 2001, astro-ph/0105369.

[31]  K. Roth,et al.  An HST study of galactic inerstellar zinc and chromium , 1995 .

[32]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[33]  E. Serabyn,et al.  An extraordinary cluster of massive stars near the centre of the Milky Way , 1998, Nature.

[34]  S. Djorgovski,et al.  The Host Galaxy of GRB 970508 , 1998, astro-ph/9807315.

[35]  B. Draine Gamma-Ray Bursts in Molecular Clouds: H2 Absorption and Fluorescence , 2000 .

[36]  Blair D. Savage,et al.  Observed Properties of Interstellar Dust , 1979 .

[37]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[38]  Jonathan C. McDowell,et al.  The Redshift of the Optical Transient Associated with GRB 010222 , 2001, astro-ph/0103081.

[39]  Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[40]  D. Burrows,et al.  X-Ray Morphology, Kinematics, and Geometry of the Eridanus Soft X-Ray Enhancement , 1994 .

[41]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[42]  S. Bhavsar,et al.  Interstellar absorption lines in the spectrum of Gamma Velorum , 1979 .

[43]  Naoto Kobayashi,et al.  Object 17: Another Cluster of Emission-Line Stars Near the Galactic Center , 1995 .

[44]  D. Lamb,et al.  Sloan Digital Sky Survey Multicolor Observations of GRB 010222 , 2001, astro-ph/0104201.

[45]  F. Frontera Gamma Ray Bursts in the Afterglow Era , 2003 .

[46]  J. Shull,et al.  Galactic interstellar abundance surveys with IUE. III. Silicon, manganese, iron, sulfur, and zinc , 1988 .

[47]  Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999, astro-ph/9906299.

[48]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[49]  M. Morris,et al.  HST/NICMOS observations of massive stellar clusters near the galactic center , 1999 .

[50]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[51]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[52]  Abraham Loeb,et al.  Identifying the Environment and Redshift of Gamma-Ray Burst Afterglows from the Time Dependence of Their Absorption Spectra , 1998 .

[53]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[54]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[55]  et al,et al.  GRB010222: afterglow emission from a rapidly decelerating shock ⋆ , 2001 .

[56]  S. R. Kulkarni,et al.  BEAMING IN GAMMA-RAY BURSTS: EVIDENCE FOR A STANDARD ENERGY RESERVOIR , 2001 .

[57]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[58]  Caltech,et al.  Spectroscopy of the Host Galaxy of the Gamma-Ray Burst 980703 , 1998, astro-ph/9808188.

[59]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[60]  A. Aguirre Intergalactic Dust and Observations of Type Ia Supernovae , 1999, astro-ph/9904319.

[61]  B. Draine H_2 Absorption and Fluorescence for Gamma Ray Bursts in Molecular Clouds , 1999, astro-ph/9907232.

[62]  E. Jenkins,et al.  Element Abundances in the Interstellar Atomic Material , 1987 .

[63]  H. Thronson,et al.  Dust and the transfer of stellar radiation within galaxies , 1991 .

[64]  M. Feroci,et al.  BeppoSAX Measurements of the Bright Gamma-Ray Burst 010222 , 2001, astro-ph/0104362.

[65]  A. Panaitescu,et al.  Fundamental Physical Parameters of Collimated Gamma-Ray Burst Afterglows , 2001 .