A competition on blow-up for semilinear wave equations with scale-invariant damping and nonlinear memory term

<p style='text-indent:20px;'>In this paper, we investigate blow-up of solutions to semilinear wave equations with scale-invariant damping and nonlinear memory term in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>, which can be represented by the Riemann-Liouville fractional integral of order <inline-formula><tex-math id="M2">\begin{document}$ 1-\gamma $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M3">\begin{document}$ \gamma\in(0, 1) $\end{document}</tex-math></inline-formula>. Our main interest is to study mixed influence from damping term and the memory kernel on blow-up conditions for the power of nonlinearity, by using test function method or generalized Kato's type lemma. We find a new competition, particularly for the small value of <inline-formula><tex-math id="M4">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula>, on the blow-up range between the effective case and the non-effective case.</p>

[1]  M. Jleli,et al.  Nonexistence of solutions to higher order evolution inequalities with nonlocal source term on Riemannian manifolds , 2022, Complex Variables and Elliptic Equations.

[2]  Shunsuke Kitamura,et al.  The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension , 2021, Journal of Differential Equations.

[3]  Ning-An Lai,et al.  Global existence for semilinear wave equations with scaling invariant damping in 3-D , 2021, 2102.00909.

[4]  M. Hamouda,et al.  Blow‐up for wave equation with the scale‐invariant damping and combined nonlinearities , 2020, Mathematical Methods in the Applied Sciences.

[5]  Wenhui Chen,et al.  Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms , 2020, 2004.09159.

[6]  H. Takamura,et al.  Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato's type lemma , 2020, 2003.10578.

[7]  Alessandro Palmieri,et al.  A global existence result for a semilinear scale‐invariant wave equation in even dimension , 2019, Mathematical Methods in the Applied Sciences.

[8]  H. Takamura,et al.  The lifespan of solutions of semilinear wave equations with the scale-invariant damping in two space dimensions , 2018, Journal of Differential Equations.

[9]  M. Kirane,et al.  Finite time blow-up for damped wave equations with space–time dependent potential and nonlinear memory , 2018, Nonlinear Differential Equations and Applications NoDEA.

[10]  B. Yordanov,et al.  Blow-up of solutions to critical semilinear wave equations with variable coefficients , 2018, Journal of Differential Equations.

[11]  A. Palmieri,et al.  Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity , 2018, Journal of Mathematical Analysis and Applications.

[12]  Jiayun Lin,et al.  Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case , 2017, Differential and Integral Equations.

[13]  M. Ikeda,et al.  Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data , 2017, Mathematische Annalen.

[14]  Jiayun Lin,et al.  A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent , 2017, 1709.00866.

[15]  Ning-An Lai,et al.  Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent , 2017, 1701.03232.

[16]  Michael Reissig,et al.  A shift in the Strauss exponent for semilinear wave equations with a not effective damping , 2015 .

[17]  M. D’Abbicco,et al.  NLWE with a special scale invariant damping in odd space dimension , 2015 .

[18]  Marcello D'Abbicco,et al.  The threshold of effective damping for semilinear wave equations , 2015 .

[19]  M. Berbiche Existence and blow-up of solutions for damped ave system with nonlinear memory , 2015 .

[20]  Yuta Wakasugi Critical exponent for the semilinear wave equation with scale invariant damping , 2012, 1211.2900.

[21]  Marcello D'Abbicco,et al.  The Threshold between Effective and Noneffective Damping for Semilinear Waves , 2012, 1211.0731.

[22]  Yi Zhou,et al.  Life-Span of Solutions to Critical Semilinear Wave Equations , 2011, 1103.3758.

[23]  A. Fino Critical exponent for damped wave equations with nonlinear memory , 2010, 1004.3850.

[24]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[25]  Qi S. Zhang,et al.  Finite time blow up for critical wave equations in high dimensions , 2004, math/0404055.

[26]  J. Wirth Solution representations for a wave equation with weak dissipation , 2002, math/0210030.

[27]  Qi S. Zhang A blow-up result for a nonlinear wave equation with damping: The critical case , 2001 .

[28]  H. Takamura,et al.  Critical Curve for p-q Systems of Nonlinear Wave Equations in Three Space Dimensions , 2000 .

[29]  M. Pierre,et al.  Critère d'existence de solutions positives pour des équations semi-linéaires non monotones , 1985 .

[30]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[31]  Michael Reissig,et al.  Global well-posedness for effectively damped wave models with nonlinear memory , 2021, Communications on Pure & Applied Analysis.

[32]  Michael Reissig,et al.  Blow-up results for effectively damped wave models with nonlinear memory , 2021, Communications on Pure & Applied Analysis.

[33]  Wenhui Chen,et al.  Blow-up Result for a Semilinear Wave Equation with a Nonlinear Memory Term , 2020 .

[34]  A. Palmieri Global Existence Results for a Semilinear Wave Equation with Scale-Invariant Damping and Mass in Odd Space Dimension , 2019, Trends in Mathematics.

[35]  Marcello D'Abbicco,et al.  The influence of a nonlinear memory on the damped wave equation , 2014 .

[36]  Mohamed Berbiche,et al.  Asymptotically self-similar global solutions of a damped wave equation with nonlinear memory , 2013, Asymptot. Anal..

[37]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .