Generic reversible jump MCMC using graphical models

Markov chain Monte Carlo techniques have revolutionized the field of Bayesian statistics. Their power is so great that they can even accommodate situations in which the structure of the statistical model itself is uncertain. However, the analysis of such trans-dimensional (TD) models is not easy and available software may lack the flexibility required for dealing with the complexities of real data, often because it does not allow the TD model to be simply part of some bigger model. In this paper we describe a class of widely applicable TD models that can be represented by a generic graphical model, which may be incorporated into arbitrary other graphical structures without significantly affecting the mechanism of inference. We also present a decomposition of the reversible jump algorithm into abstract and problem-specific components, which provides infrastructure for applying the method to all models in the class considered. These developments represent a first step towards a context-free method for implementing TD models that will facilitate their use by applied scientists for the practical exploration of model uncertainty. Our approach makes use of the popular WinBUGS framework as a sampling engine and we illustrate its use via two simple examples in which model uncertainty is a key feature.

[1]  S. Chib,et al.  Bayesian residual analysis for binary response regression models , 1995 .

[2]  Simon J. Godsill,et al.  A reversible jump sampler for autoregressive time series , 1997, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[3]  F. Harrell,et al.  Differential diagnosis of acute meningitis. An analysis of the predictive value of initial observations. , 1989, JAMA.

[4]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[5]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[6]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[7]  Adrian F. M. Smith,et al.  Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .

[8]  Lars Bertram,et al.  New Frontiers in Alzheimer's Disease Genetics , 2001, Neuron.

[9]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[10]  J. Ordovás Pharmacogenetics of lipid diseases , 2004, Human Genomics.

[11]  Stephen P. Brooks,et al.  Convergence Assessment for Reversible Jump MCMC Simulations , 2007 .

[12]  Berrit C Stroehla,et al.  Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. , 2002, American journal of epidemiology.

[13]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[14]  David J. Spiegelhalter,et al.  Bayesian graphical modelling: a case‐study in monitoring health outcomes , 2002 .

[15]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[16]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[17]  Ajay Jasra,et al.  Population-Based Reversible Jump Markov Chain Monte Carlo , 2007, 0711.0186.

[18]  A. P. Dawid,et al.  Independence properties of directed Markov fields. Networks, 20, 491-505 , 1990 .

[19]  Scott A. Sisson,et al.  Trans-dimensional Markov chains : A decade of progress and future perspectives , 2004 .

[20]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[21]  P. Green,et al.  Trans-dimensional Markov chain Monte Carlo , 2000 .

[22]  B. D. Finetti,et al.  Bayesian inference and decision techniques : essays in honor of Bruno de Finetti , 1986 .

[23]  N. G. Best,et al.  WinBUGS User Manual: Version 1.4 , 2001 .

[24]  Christian P. Robert,et al.  MCMC Convergence Diagnostics : A « Reviewww » , 1998 .

[25]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[26]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[27]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[28]  L Knorr-Held,et al.  Bayesian Detection of Clusters and Discontinuities in Disease Maps , 2000, Biometrics.

[29]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[30]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[31]  Jon Wakefield,et al.  Bayesian Analysis of Population PK/PD Models: General Concepts and Software , 2002, Journal of Pharmacokinetics and Pharmacodynamics.

[32]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[33]  Walter R. Gilks,et al.  Full conditional distributions , 1995 .

[34]  Adrian F. M. Smith,et al.  A Bayesian CART algorithm , 1998 .

[35]  M. Hurn,et al.  Improving the acceptance rate of reversible jump MCMC proposals , 2004 .

[36]  Rudolph E. Tanzi,et al.  Alzheimer's disease: the cholesterol connection , 2003, Nature Neuroscience.

[37]  David J. Lunn,et al.  A Bayesian toolkit for genetic association studies , 2006, Genetic epidemiology.

[38]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[39]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[40]  Scott A. Sisson,et al.  Transdimensional Markov Chains , 2005 .

[41]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[42]  R. Waagepetersen,et al.  A Tutorial on Reversible Jump MCMC with a View toward Applications in QTL‐mapping , 2001 .

[43]  Claudio J. Verzilli,et al.  Bayesian modelling of multivariate quantitative traits using seemingly unrelated regressions , 2005, Genetic epidemiology.

[44]  Frank E. Harrell,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2001 .

[45]  Sylvia Richardson,et al.  Stochastic search variable selection , 1995 .

[46]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[47]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[48]  T. Sellers Statistical Methods in Genetic Epidemiology , 2005 .

[49]  C. Holmes,et al.  Bayesian auxiliary variable models for binary and multinomial regression , 2006 .

[50]  Niklaus Wirth,et al.  Programming in Oberon - steps beyond Pascal and Modula , 1992 .

[51]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[53]  D G Denison,et al.  Bayesian Partitioning for Estimating Disease Risk , 2001, Biometrics.

[54]  David G. T. Denison,et al.  Bayesian MARS , 1998, Stat. Comput..

[55]  Margaret T May,et al.  Regression Modelling Strategies with Applications to Linear Models, Logistic Regression, and Survival Analysis. Frank E Harrell Jr, New York: Springer 2001, pp. 568, $79.95. ISBN 0-387-95232-2. , 2002 .

[56]  David J. Lunn Automated covariate selection and Bayesian model averaging in population PK/PD models , 2008, Journal of Pharmacokinetics and Pharmacodynamics.

[57]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[58]  J. Forster Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions - Discussion , 2003 .

[59]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[60]  Rafael Dueire Lins,et al.  Garbage collection: algorithms for automatic dynamic memory management , 1996 .

[61]  Radford M. Neal Markov Chain Monte Carlo Methods Based on `Slicing' the Density Function , 1997 .

[62]  Agostino Nobile,et al.  Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..

[63]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[64]  David Hastie,et al.  Towards Automatic Reversible Jump Markov Chain Monte Carlo , 2005 .

[65]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .