A Polynomial-Time Algorithm for the Equivalence between Quantum Sequential Machines

Quantum sequential machines (QSMs) are a quantum version of stochastic sequential machines (SSMs). Recently, we showed that two QSMs M_1 and M_2 with n_1 and n_2 states, respectively, are equivalent iff they are (n_1+n_2)^2--equivalent (Theoretical Computer Science 358 (2006) 65-74). However, using this result to check the equivalence likely needs exponential expected time. In this paper, we consider the time complexity of deciding the equivalence between QSMs and related problems. The main results are as follows: (1) We present a polynomial-time algorithm for deciding the equivalence between QSMs, and, if two QSMs are not equivalent, this algorithm will produce an input-output pair with length not more than (n_1+n_2)^2. (2) We improve the bound for the equivalence between QSMs from (n_1+n_2)^2 to n_1^2+n_2^2-1, by employing Moore and Crutchfield's method (Theoretical Computer Science 237 (2000) 275-306). (3) We give that two MO-1QFAs with n_1 and n_2 states, respectively, are equivalent iff they are (n_1+n_2)^2--equivalent, and further obtain a polynomial-time algorithm for deciding the equivalence between two MO-1QFAs. (4) We provide a counterexample showing that Koshiba's method to solve the problem of deciding the equivalence between MM-1QFAs may be not valid, and thus the problem is left open again.

[1]  M. W. Shields An Introduction to Automata Theory , 1988 .

[2]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[3]  John Watrous,et al.  Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..

[4]  Rahul Tripathi,et al.  Quantum and classical complexity classes: Separations, collapses, and closure properties , 2003, Inf. Comput..

[5]  Rusins Freivalds,et al.  Probabilistic Two-Way Machines , 1981, MFCS.

[6]  Hiroshi Imai,et al.  One-Way Probabilistic Reversible and Quantum One-Counter Automata , 2000, COCOON.

[7]  Albert G. Greenberg,et al.  A Lower Bound for Probabilistic Algorithms for Finite State Machines , 1984, J. Comput. Syst. Sci..

[8]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[9]  R. Feynman Simulating physics with computers , 1999 .

[10]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[11]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[12]  Stanley Gudder Quantum Computers , 2000 .

[13]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[14]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  Takeshi Koshiba,et al.  Polynomial-Time Algorithms for the Equivalence for One-Way Quantum Finite Automata , 2009, ISAAC.

[16]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[17]  Václav Hlavác,et al.  Proceedings of the 27th Conference on Current Trends in Theory and Practice of Informatics , 2000 .

[18]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[19]  Oscar H. IBARm Information and Control , 1957, Nature.

[20]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[21]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[22]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[23]  Marco Carpentieri,et al.  Regular Languages Accepted by Quantum Automata , 2001, Inf. Comput..

[24]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[25]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[26]  Daowen Qiu,et al.  Determination of equivalence between quantum sequential machines , 2006, Theor. Comput. Sci..

[27]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  Vincent D. Blondel,et al.  Decidable and Undecidable Problems about Quantum Automata , 2005, SIAM J. Comput..

[30]  Jozef Gruska,et al.  Descriptional Complexity Issues in Quantum Computing , 2000, J. Autom. Lang. Comb..

[31]  D. Faddeev,et al.  Computational methods of linear algebra , 1981 .

[32]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[33]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..

[34]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[35]  Farid M. Ablayev,et al.  Complexity of Quantum Uniform and Nonuniform Automata , 2005, Developments in Language Theory.

[36]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[38]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[39]  H. S. Allen The Quantum Theory , 1928, Nature.

[40]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[41]  Marats Golovkins,et al.  Quantum Pushdown Automata , 2000, SOFSEM.

[42]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[43]  Daowen Qiu,et al.  Characterization of Sequential Quantum Machines , 2002 .

[44]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..