The random matrix regime of Maronna's estimator for observations corrupted by elliptical noise

This article studies the behavior of the Maronna robust scatter estimator $\hat{C}_N\in \mathbb{C}^{N\times N}$ of a sequence of observations $y_1,...,y_n$ which is composed of a $K$ dimensional signal drown in a heavy tailed noise, i.e $y_i=A_N s_i+x_i$ where $A_N \in \mathbb{C}^{N\times K}$ and $x_i$ is drawn from elliptical distribution. In particular, we prove that as the population dimension $N$, the number of observations $n$ and the rank of $A_N$ grow to infinity at the same pace and under some mild assumptions, the robust scatter matrix can be characterized by a random matrix $\hat{S}_N$ that follows a standard random model. Our analysis can be very useful for many applications of the fields of statistical inference and signal processing.

[1]  Mohamed-Slim Alouini,et al.  No Eigenvalues Outside the Limiting Support of Generally Correlated Gaussian Matrices , 2016, IEEE Transactions on Information Theory.

[2]  Shahrokh Valaee,et al.  Parametric localization of distributed sources , 1995, IEEE Trans. Signal Process..

[3]  Pascal Bianchi,et al.  Performance analysis of some eigen-based hypothesis tests for collaborative sensing , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[4]  Philippe Loubaton,et al.  A subspace estimator for fixed rank perturbations of large random matrices , 2011, J. Multivar. Anal..

[5]  Matthew R. McKay,et al.  Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators , 2014, J. Multivar. Anal..

[6]  Romain Couillet,et al.  On the Convergence of Maronna’s $M$-Estimators of Scatter , 2014, IEEE Signal Processing Letters.

[7]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[8]  R. Couillet,et al.  Large System Analysis of Linear Precoding in MISO Broadcast Channels with Limited Feedback , 2009 .

[9]  T. Tao Topics in Random Matrix Theory , 2012 .

[10]  Mérouane Debbah,et al.  Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels Under Limited Feedback , 2009, IEEE Transactions on Information Theory.

[11]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[12]  Roy D. Yates,et al.  A Framework for Uplink Power Control in Cellular Radio Systems , 1995, IEEE J. Sel. Areas Commun..

[13]  Romain Couillet,et al.  The random matrix regime of Maronna's M-estimator with elliptically distributed samples , 2013, J. Multivar. Anal..

[14]  Philippe Loubaton,et al.  Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case , 2010, IEEE Transactions on Information Theory.

[15]  Romain Couillet,et al.  Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals , 2016, J. Multivar. Anal..

[16]  Mohamed-Slim Alouini,et al.  On the Smallest Eigenvalue of General correlated Gaussian Matrices , 2014, ArXiv.

[17]  Romain Couillet,et al.  Robust M-Estimation for Array Processing: A Random Matrix Approach , 2012, ArXiv.

[18]  Boaz Nadler,et al.  Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator , 2010, IEEE Transactions on Signal Processing.

[19]  Pascal Bianchi,et al.  Cooperative spectrum sensing using random matrix theory , 2008, 2008 3rd International Symposium on Wireless Pervasive Computing.

[20]  Romain Couillet Robust spiked random matrices and a robust G-MUSIC estimator , 2015, J. Multivar. Anal..

[21]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[22]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[23]  W. Hachem,et al.  Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.

[24]  Philippe Forster,et al.  CFAR property and robustness of the lowrank adaptive normalized matched filters detectors in low rank compound gaussian context , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[25]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .