Spatiotemporal indicators of solar energy potential in the Guiana Shield using GOES images

The purpose of this article is to evaluate the potential for solar energy in the Guiana Shield and propose indicators to encourage the exploitation of solar energy systems in this area. For this, we use the Heliosat-2 optimized method to process images from the geostationary meteorological satellite GOES acquired in the period from April 2010 to July 2015. We calculated the average daily global horizontal irradiation (GHI) and direct normal irradiation (DNI) throughout the study period. The results obtained allowed us to establish four indicators: maps of production potential, the inter-day variability of DNI and GHI, maps of solar panel orientation related to maximum solar potential, and maps of areas where the solar resource is under the exploitable potential threshold. We also added an additional indicator, the suitability of areas for solar system installation depending on the ground slope. Our study shows that the average value of production potential for the entire Guiana Shield is approximately 1780 kWh.kWc-1 .year-1 for GHI and 2040 kWh.kWc-1 .year-1 for DNI. Comparisons with pyranometer measurements indicate an error relative bias of less than 2% and a relative RMSE of less than 21% for hourly estimates of GHI. Although the Guiana Shield region is covered by many clouds, few areas show insufficient solar potential for the exploitation of GHI and DNI, but the hilly nature of the area limits possible locations of very large power plants and instead favors more medium-sized plants. This is the first study that offers exploitability indicators for solar resources in the Guiana Shield. In conclusion, the established indicators provide a new perspective on the solar potential in the Guiana Shield and are expected to promote the development of new solar energy operating systems.

[1]  M. V. Guisado,et al.  Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information , 2015 .

[2]  Lucien Wald,et al.  Converting a successful research project into a sustainable service: The case of the SoDa Web service , 2006, Environ. Model. Softw..

[3]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[4]  H. Beyer,et al.  Modifications of the Heliosat procedure for irradiance estimates from satellite images , 1996 .

[5]  kais J. Al-Jumaily,et al.  Evaluation of Meteosat-8 measurements using daily global solar radiation for two stations in Iraq , 2010 .

[6]  Reda M. A. Hassan,et al.  Assessing surface solar irradiance and its long-term variations in the northern Africa desert climate using Meteosat images , 2010 .

[7]  L. Wald,et al.  On the clear sky model of the ESRA — European Solar Radiation Atlas — with respect to the heliosat method , 2000 .

[8]  Zhongxin Chen,et al.  Solar irradiance estimated from FY-2 data at some north China sites , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Marc Muselli,et al.  Satellite-based assessment and in situ validation of solar irradiation maps in the Republic of Djibouti , 2015 .

[10]  A. Gastli,et al.  Solar electricity prospects in Oman using GIS-based solar radiation maps , 2010 .

[11]  Ricardo Rüther,et al.  Atlas Brasileiro de Energia Solar , 2017 .

[12]  Lucien Wald,et al.  Using Meteosat images to map the solar radiation: improvements of the HELIOSAT method , 1998 .

[13]  Michael Geiger,et al.  A Web service for controlling the quality of measurements of global solar irradiation , 2002 .

[14]  W. Palz Solar Radiation Data , 1982 .

[15]  R. Stuhlmann,et al.  Effects of burning of biomass on satellite estimations of solar irradiation in Brazil , 2000 .

[16]  E. Pereira,et al.  Parameterization of aerosols from burning biomass in the Brazil-SR radiative transfer model , 2006 .

[17]  Lucien Wald,et al.  Estimating Incident Solar Radiation at the Surface from Images of the Earth Transmitted by Geostationary Satellites: the Heliosat Project , 1987 .

[18]  Steven Dewitte,et al.  The satellite application facility on climate monitoring , 2002 .

[19]  H. Guillard,et al.  A method for the determination of the global solar radiation from meteorological satellite data , 1986 .

[20]  M. Thring World Energy Outlook , 1977 .

[21]  Serm Janjai,et al.  Estimation of solar radiation over Cambodia from long-term satellite data , 2011 .

[22]  L. Wald,et al.  Using reduced data sets ISCCP-B2 from the Meteosat satellites to assess surface solar irradiance , 2007 .

[23]  Valéry Gond,et al.  Broad-scale spatial pattern of forest landscape types in the Guiana Shield , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[24]  H. Beyer,et al.  Solar energy assessment using remote sensing technologies , 2003 .

[25]  P. K. Joshi,et al.  Solar power potential mapping in India using remote sensing inputs and environmental parameters , 2014 .

[26]  Zhipeng Qu La nouvelle méthode Heliosat-4 pour l’évaluation du rayonnement solaire au sol , 2013 .

[27]  Hosni Ghedira,et al.  Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data , 2016 .

[28]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[29]  L. Wald,et al.  Optimizing the Heliosat-II Method for Surface Solar Irradiation Estimation with GOES Images , 2015 .

[30]  Patrick Minnis,et al.  Rapid technique to cross-calibrate satellite imager visible channels , 2004, SPIE Optics + Photonics.

[31]  Lucien Wald,et al.  The HelioClim Project: Surface Solar Irradiance Data for Climate Applications , 2011, Remote. Sens..

[32]  Serm Janjai,et al.  A model for calculating hourly global solar radiation from satellite data in the tropics , 2009 .

[33]  Jörg Trentmann,et al.  Remote sensing of solar surface radiation for climate monitoring — the CM-SAF retrieval in international comparison , 2012 .

[34]  L. Wald,et al.  The method Heliosat-2 for deriving shortwave solar radiation from satellite images , 2004 .

[35]  J. Almorox,et al.  ESTIMATIO N OF GLOBAL SOLAR RADIATION IN VENEZUELA , 2008 .

[36]  L. Wald,et al.  Worldwide Linke turbidity information , 2003 .

[37]  S. L. Abreu,et al.  Satellite-derived solar resource maps for Brazil under SWERA project , 2007 .

[38]  R. Pinker,et al.  Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale , 1992 .

[39]  Serm Janjai,et al.  Satellite-derived solar resource maps for Myanmar , 2013 .