Highlighting photonics: looking into the next decade

Let there be light–to change the world we want to be! Over the past several decades, and ever since the birth of the first laser, mankind has witnessed the development of the science of light, as light-based technologies have revolutionarily changed our lives. Needless to say, photonics has now penetrated into many aspects of science and technology, turning into an important and dynamically changing field of increasing interdisciplinary interest. In this inaugural issue of eLight, we highlight a few emerging trends in photonics that we think are likely to have major impact at least in the upcoming decade, spanning from integrated quantum photonics and quantum computing, through topological/non-Hermitian photonics and topological insulator lasers, to AI-empowered nanophotonics and photonic machine learning. This Perspective is by no means an attempt to summarize all the latest advances in photonics, yet we wish our subjective vision could fuel inspiration and foster excitement in scientific research especially for young researchers who love the science of light.

[1]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[2]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[3]  X. Hu,et al.  Scheme to Achieve Silicon Topological Photonics , 2015, 1503.00416.

[4]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[5]  P. Nordlander,et al.  Plasmonic colour generation , 2017 .

[6]  Xueshi Guo,et al.  Deterministic generation of a two-dimensional cluster state , 2019, Science.

[7]  Gennady Shvets,et al.  All-Si valley-Hall photonic topological insulator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[8]  Lei Deng,et al.  Entanglement-based secure quantum cryptography over 1,120 kilometres , 2020, Nature.

[9]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[10]  A. Boes,et al.  11 TOPS photonic convolutional accelerator for optical neural networks , 2021, Nature.

[11]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[12]  J. Vučković,et al.  Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects , 2020, 2010.15700.

[13]  Darrick E. Chang,et al.  Quantum nonlinear optics — photon by photon , 2014, Nature Photonics.

[14]  M. Bandres,et al.  Topological photonics: Where do we go from here? , 2020, Frontiers in Optics and Photonics.

[15]  M. Segev,et al.  Photonic Floquet topological insulators in a fractal lattice , 2020, Light, science & applications.

[16]  M. Segev,et al.  Photonic topological Anderson insulators , 2018, Nature.

[17]  Masahito Ueda,et al.  Symmetry and Topology in Non-Hermitian Physics , 2018, Physical Review X.

[18]  V. Shalaev,et al.  Machine Learning for Integrated Quantum Photonics , 2020, ACS Photonics.

[19]  S. Longhi,et al.  Non-Hermitian topological light steering , 2019, Science.

[20]  Han Zhao,et al.  Topological hybrid silicon microlasers , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[21]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[22]  D. Leykam,et al.  Special Issue on “Topological photonics and beyond: novel concepts and recent advances” , 2020, Light, science & applications.

[23]  Kevin P. Chen,et al.  Braiding photonic topological zero modes , 2019, Nature Physics.

[24]  H. Buljan,et al.  Four-dimensional photonic lattices and discrete tesseract solitons , 2012, 1210.4283.

[25]  Lian Shen,et al.  Deep-learning-enabled self-adaptive microwave cloak without human intervention , 2020 .

[26]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[27]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[28]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[29]  A. Alú,et al.  Topological nanophotonics , 2019, Nanophotonics.

[30]  Wei Ma,et al.  Deep learning for the design of photonic structures , 2020, Nature Photonics.

[31]  M. Soljačić,et al.  Tailoring high-temperature radiation and the resurrection of the incandescent source. , 2016, Nature nanotechnology.

[32]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[33]  M. Bandres,et al.  Topological lasers , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[34]  N. Mahne,et al.  Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses , 2021, Nature Photonics.

[35]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[36]  Ling Lu,et al.  Dirac-vortex topological cavity , 2019, 1911.09540.

[37]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[38]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[39]  Rachel Won,et al.  Integrating silicon photonics , 2010 .

[40]  M. Segev,et al.  Topological protection of biphoton states , 2018, Science.

[41]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[42]  Li Ge,et al.  Non-Hermitian photonics based on parity–time symmetry , 2017 .

[43]  T. Ozawa,et al.  Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics , 2015, 1510.03910.

[44]  Y. Chong,et al.  Nonlinear topological photonics , 2019, Applied Physics Reviews.

[45]  H. Ni,et al.  Low-threshold topological nanolasers based on the second-order corner state , 2020, Light: Science & Applications.

[46]  Nonlinear control of PT-symmetry and non-Hermitian topological states , 2020, 2010.16294.

[47]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[48]  Topological Photonics , 2014, 1408.6730.

[49]  D. Fan,et al.  Observation of Non-Abelian Nodal Links in Photonics. , 2019, Physical review letters.

[50]  F. Nori,et al.  Parity–time symmetry and exceptional points in photonics , 2019, Nature Materials.

[51]  M. Soljačić,et al.  Synthesis and observation of non-Abelian gauge fields in real space , 2019, Science.

[52]  A. Szameit,et al.  Topological funneling of light , 2020, Science.

[53]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[54]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[55]  Ionic amplifying circuits inspired by electronics and biology , 2020, Nature Communications.

[56]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[58]  Mihir K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[59]  Hugh Willmott,et al.  Challenges and prospects , 2015 .

[60]  Deep learning gets scope time , 2019, Nature Methods.

[61]  Shanhui Fan,et al.  Training of Photonic Neural Networks through In Situ Backpropagation , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[62]  A. Polman,et al.  Nanophotonics: Shrinking light-based technology , 2015, Science.

[63]  M. Bandres,et al.  Mode-Locked Topological Insulator Laser Utilizing Synthetic Dimensions , 2020, 2104.03688.

[64]  Tao Cai,et al.  A topological quantum optics interface , 2018, Science.

[65]  Xiaofei Xiao,et al.  A perspective on topological nanophotonics: Current status and future challenges , 2018, Journal of Applied Physics.

[66]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[67]  D. Leykam,et al.  Universal momentum-to-real-space mapping of topological singularities , 2019, Nature Communications.

[68]  Dries Vercruysse,et al.  Nanophotonic inverse design with SPINS: Software architecture and practical considerations , 2019, Applied Physics Reviews.

[69]  D Psaltis,et al.  Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. , 1985, Optics letters.

[70]  Stefan Nolte,et al.  Observation of a Topological Transition in the Bulk of a Non-Hermitian System. , 2015, Physical review letters.

[71]  M. Bandres,et al.  Topological insulator laser: Theory , 2018, Science.

[72]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[73]  G. Guo,et al.  Quantum simulation of 2d topological physics using orbital-angular-momentum-carrying photons in a 1d array of cavities , 2015, 1512.08116.

[74]  B. G. DeLacy,et al.  Transparent displays enabled by resonant nanoparticle scattering , 2014, Nature Communications.

[75]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[76]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[77]  Yuebing Zheng,et al.  Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale , 2018, Nanophotonics.

[78]  Shuang Zhang AI empowered metasurfaces , 2020, Light, science & applications.

[79]  Trevon Badloe,et al.  Deep learning enabled inverse design in nanophotonics , 2020, Nanophotonics.

[81]  I. Sagnes,et al.  Lasing in topological edge states of a one-dimensional lattice , 2017, 1704.07310.

[82]  M. Segev,et al.  Probing topological invariants in the bulk of a non-Hermitian optical system , 2014, 1408.2191.

[83]  Amin Arbabian,et al.  Inverse-designed non-reciprocal pulse router for chip-based LiDAR , 2020 .

[84]  A. Szameit,et al.  Efficient Light Funneling based on the non-Hermitian Skin Effect , 2020, 2004.01990.

[85]  M. Bandres,et al.  Complex Edge-State Phase Transitions in 1D Topological Laser Arrays , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[86]  Xiongfeng Ma,et al.  Secure quantum key distribution with realistic devices , 2020 .

[87]  Xingyuan Xu,et al.  11 TeraFLOPs per second photonic convolutional accelerator for deep learning optical neural networks , 2020, ArXiv.

[88]  Fei Gao,et al.  Probing topological protection using a designer surface plasmon structure , 2016, Nature communications.

[89]  Ching Hua Lee,et al.  Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits , 2020, Nature Physics.

[90]  Ulrich Kuhl,et al.  Selective enhancement of topologically induced interface states in a dielectric resonator chain , 2014, Nature Communications.

[91]  Warit Asavanant,et al.  Time-Domain Multiplexed 2-Dimensional Cluster State : Universal Quantum Computing Platform , 2019 .

[92]  Warit Asavanant,et al.  Generation of time-domain-multiplexed two-dimensional cluster state , 2019, Science.

[93]  Mohammad P. Hokmabadi,et al.  Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity , 2019, Nature.

[94]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[95]  Shanhui Fan,et al.  Photonic gauge potential in a system with a synthetic frequency dimension. , 2015, Optics letters.

[96]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[97]  William Graf,et al.  Deep learning for cellular image analysis , 2019, Nature Methods.

[98]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[99]  T. Ozawa,et al.  Four-Dimensional Quantum Hall Effect with Ultracold Atoms. , 2015, Physical review letters.

[100]  Guangwen Yang,et al.  Quantum computational advantage using photons , 2020, Science.

[101]  Yang Long,et al.  Unsupervised Manifold Clustering of Topological Phononics. , 2020, Physical review letters.

[102]  M. Segev,et al.  Identifying Topological Phase Transitions in Experiments Using Manifold Learning. , 2020, Physical review letters.

[103]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[104]  Baile Zhang,et al.  Realization of a three-dimensional photonic topological insulator , 2018, Nature.

[105]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[106]  J. Chiaverini,et al.  Integrated multi-wavelength control of an ion qubit , 2020, Nature.

[107]  Zheng Yan,et al.  Emerging role of machine learning in light-matter interaction , 2019, Light: Science & Applications.

[108]  A. Kildishev,et al.  Ten years of spasers and plasmonic nanolasers , 2020, Light, science & applications.

[109]  M. Bandres,et al.  Topological insulator laser: Experiments , 2018, Science.

[110]  Abdelkrim El Amili,et al.  Nonreciprocal lasing in topological cavities of arbitrary geometries , 2017, Science.

[111]  M. Rudner,et al.  Topological transition in a non-Hermitian quantum walk. , 2008, Physical review letters.

[112]  Val Zwiller,et al.  Hybrid integrated quantum photonic circuits , 2020, Nature Photonics.

[113]  M. Bandres,et al.  Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport , 2016, 1705.09380.

[114]  Alexey V. Gorshkov,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[115]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[116]  Xiao Hu,et al.  Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material. , 2015, Physical review letters.

[117]  F. Xia,et al.  Artificial Metaphotonics Born Naturally in Two Dimensions. , 2020, Chemical reviews.

[118]  Y. Don,et al.  Deterministic generation of a cluster state of entangled photons , 2016, Science.

[119]  Y. Chong,et al.  Optical resonator analog of a two-dimensional topological insulator. , 2012, Physical review letters.

[120]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[121]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[122]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[123]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[124]  Y. Ashida,et al.  Topological Phases of Non-Hermitian Systems , 2018, Physical Review X.

[125]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[126]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[127]  Jens H. Schmid,et al.  Subwavelength integrated photonics , 2018, Nature.

[128]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[129]  Gennady Shvets,et al.  Two-dimensional topological photonics , 2017, Nature Photonics.

[130]  Koen Van Laer,et al.  Current status and future challenges , 2015 .

[131]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[132]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[133]  Dmitry K. Polyushkin,et al.  Ultrafast machine vision with 2D material neural network image sensors , 2020, Nature.

[134]  Natalia M. Litchinitser,et al.  Robust topologically protected transport in photonic crystals at telecommunication wavelengths , 2018, Nature Nanotechnology.

[135]  Qiming Zhang,et al.  Artificial neural networks enabled by nanophotonics , 2019, Light: Science & Applications.

[136]  Topological Insulator VCSEL Array , 2020, 2020 Conference on Lasers and Electro-Optics (CLEO).

[137]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[138]  Venkata Vikram Orre,et al.  Topologically robust transport of entangled photons in a 2D photonic system. , 2016, Optics express.

[139]  M. Parto,et al.  Non-Hermitian and topological photonics: optics at an exceptional point , 2020, Frontiers in Optics and Photonics.

[140]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[141]  C. Fang,et al.  Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. , 2019, Physical review letters.

[142]  N. Engheta,et al.  Inverse-designed metastructures that solve equations , 2019, Science.

[143]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[144]  M. Bandres,et al.  Towards the experimental realization of the topological insulator laser , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[145]  C. T. Chan,et al.  Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. , 2014, Nature communications.

[146]  Stanislav Straupe,et al.  Experimental neural network enhanced quantum tomography , 2019, npj Quantum Information.

[147]  A. Kildishev,et al.  Ten years of spasers and plasmonic nanolasers , 2020, Light: Science & Applications.

[148]  M. Bandres,et al.  Complex Edge-State Phase Transitions in 1D Topological Laser Arrays , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[149]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[150]  I. Carusotto,et al.  Theory of the Coherence of Topological Lasers , 2019, Physical Review X.

[151]  Dries Vercruysse,et al.  On-chip integrated laser-driven particle accelerator , 2019, Science.

[152]  Charles Darwin,et al.  Experiments , 1800, The Medical and physical journal.

[153]  Dirk Englund,et al.  Programmable photonic circuits , 2020, Nature.

[154]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[155]  L. Pavesi,et al.  Near-ideal spontaneous photon sources in silicon quantum photonics , 2020, Nature Communications.

[156]  Marin Soljacic,et al.  Probing topological protection using a designer surface plasmon structure. , 2012 .

[157]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[158]  P. Zoller,et al.  Observation of chiral edge states with neutral fermions in synthetic Hall ribbons , 2015, Science.

[159]  Raman Kashyap,et al.  High-dimensional one-way quantum processing implemented on d-level cluster states , 2018, Nature Physics.

[160]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[161]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[162]  Giulia Marcucci,et al.  Machine learning inverse problem for topological photonics , 2018, Communications Physics.

[163]  Shanhui Fan,et al.  Inverse-designed photonic circuits for fully passive, bias-free Kerr-based nonreciprocal transmission and routing , 2019, 1905.04818.

[164]  Qi Jie Wang,et al.  Electrically pumped topological laser with valley edge modes , 2020, Nature.

[165]  M Segev,et al.  Topologically protected bound states in photonic parity-time-symmetric crystals. , 2017, Nature materials.

[166]  M. K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[167]  Topological Protection of Photonic Path Entanglement , 2016, 1605.02053.

[168]  Gordon Wetzstein,et al.  Inference in artificial intelligence with deep optics and photonics , 2020, Nature.

[169]  Dries Vercruysse,et al.  4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics , 2020 .

[170]  M. Segev,et al.  Topologically protected entangled photonic states , 2019, Nanophotonics.

[171]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[172]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[173]  Dirk Englund,et al.  Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip , 2019, Nature Communications.

[174]  I. B. Spielman,et al.  Visualizing edge states with an atomic Bose gas in the quantum Hall regime , 2015, Science.

[175]  Kunkun Wang,et al.  Non-Hermitian bulk–boundary correspondence in quantum dynamics , 2019, Nature Physics.

[176]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[177]  Andrea Alù,et al.  Machine-learning reprogrammable metasurface imager , 2019, Nature Communications.

[178]  M. Bandres,et al.  Photonic topological insulator in synthetic dimensions , 2018, Nature.

[179]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2008, Physical review letters.

[180]  R. Ma,et al.  A high-performance topological bulk laser based on band-inversion-induced reflection , 2019, Nature Nanotechnology.

[181]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[182]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[183]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[184]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .