On the velocity gradient tensor and fluid feature extraction

A 3-D Computational Fluid Dynamics flow field may contain many topological features such as vortex cores, separation surfaces, shock surfaces, and recirculation bubbles. We describe several techniques that identify these global features using local analytical tests that can applied independently to any point or cell in a vector field. These techniques draw on concepts from critical point theory and phase plane analysis and utilize the velocity gradient tensor. For this 3x3 tensor an eigen-analysis produces 3 eigenvalues. Mapping these to the complex plane produces the classification signature. Vector field topology can be used as the foundation of automated fluid feature extraction.

[1]  G. T. Chapman,et al.  Topological classification of flow separation on three-dimensional bodies , 1986 .

[2]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[3]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[4]  Todd Plessel,et al.  FAST - A multiprocessed environment for visualization of computational fluid dynamics , 1991 .

[5]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[6]  Lambertus Hesselink,et al.  Analysis and representation of complex structures in separated flows , 1991, Electronic Imaging.

[7]  William E. Lorensen,et al.  The stream polygon-a technique for 3D vector field visualization , 1991, Proceeding Visualization '91.

[8]  Lambertus Hesselink,et al.  Visualization of second order tensor fields and matrix data , 1992, Proceedings Visualization '92.

[9]  Robert Haimes,et al.  Visualization of 3-D vector fields - Variations on a stream , 1992 .

[10]  J. V. van Wijk,et al.  A probe for local flow field visualization , 1993, Proceedings Visualization '93.

[11]  Jarke J. van Wijk,et al.  A Probe for Local Flow Field Visualization , 1993, IEEE Visualization.

[12]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[13]  Ronald Peikert,et al.  Flow visualization for turbomachinery design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[14]  Robert Haimes,et al.  Vortex identification—applications in aerodynamics: a case study , 1997 .

[15]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998 .

[16]  Roger C. Strawn,et al.  Computer Visualization Of Vortex Wake Systems , 1998 .

[17]  David Kenwright Automatic detection of open and closed separation and attachment lines , 1998 .

[18]  Robert Haimes,et al.  Shock detection from computational fluid dynamics results , 1999 .

[19]  Chris Henze,et al.  Feature Extraction of Separation and Attachment Lines , 1999, IEEE Trans. Vis. Comput. Graph..