Using the primal-dual interior point algorithm within the branch-price-and-cut method

Branch-price-and-cut has proven to be a powerful method for solving integer programming problems. It combines decomposition techniques with the generation of both columns and valid inequalities and relies on strong bounds to guide the search in the branch-and-bound tree. In this paper, we present how to improve the performance of a branch-price-and-cut method by using the primal-dual interior point algorithm. We discuss in detail how to deal with the challenges of using the interior point algorithm with the core components of the branch-price-and-cut method. The effort to overcome the difficulties pays off in a number of advantageous features offered by the new approach. We present the computational results of solving well-known instances of the vehicle routing problem with time windows, a challenging integer programming problem. The results indicate that the proposed approach delivers the best overall performance when compared with a similar branch-price-and-cut method which is based on the simplex algorithm.

[1]  Dominique Feillet,et al.  A tutorial on column generation and branch-and-price for vehicle routing problems , 2010, 4OR.

[2]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[3]  Michael J. Todd,et al.  Solving combinatorial optimization problems using Karmarkar's algorithm , 1992, Math. Program..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  François Vanderbeck,et al.  Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem , 2000, Oper. Res..

[6]  Samir Elhedhli,et al.  The integration of an interior-point cutting plane method within a branch-and-price algorithm , 2004, Math. Program..

[7]  Zeger Degraeve,et al.  Optimal Integer Solutions to Industrial Cutting Stock Problems , 1999, INFORMS J. Comput..

[8]  Jacques Desrosiers,et al.  On Compact Formulations for Integer Programs Solved by Column Generation , 2005, Ann. Oper. Res..

[9]  Jacek Gondzio,et al.  A New Unblocking Technique to Warmstart Interior Point Methods Based on Sensitivity Analysis , 2008, SIAM J. Optim..

[10]  Jacek Gondzio,et al.  Interior point methods 25 years later , 2012, Eur. J. Oper. Res..

[11]  John E. Mitchell,et al.  Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..

[12]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[13]  Brian Kallehauge,et al.  The Vehicle Routing Problem with Time Windows , 2006, Vehicle Routing.

[14]  Reinaldo Morabito,et al.  Vehicle routing with multiple deliverymen: Modeling and heuristic approaches for the VRPTW , 2012, Eur. J. Oper. Res..

[15]  Vladimir Vacic,et al.  VEHICLE ROUTING PROBLEM WITH TIME WINDOWS , 2014 .

[16]  Pierre Hansen,et al.  An Interior Point Algorithm for Minimum Sum-of-Squares Clustering , 1997, SIAM J. Sci. Comput..

[17]  Jacques Desrosiers,et al.  On the choice of explicit stabilizing terms in column generation , 2007, Discret. Appl. Math..

[18]  Claude Lemaréchal,et al.  Comparison of bundle and classical column generation , 2008, Math. Program..

[19]  E. Alper Yildirim,et al.  Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension , 2008, Comput. Optim. Appl..

[20]  Jacques Desrosiers,et al.  Stabilized dynamic constraint aggregation for solving set partitioning problems , 2011, Eur. J. Oper. Res..

[21]  Anthony Vannelli,et al.  On Interior-Point Warmstarts for Linear and Combinatorial Optimization , 2010, SIAM J. Optim..

[22]  Nicos Christofides,et al.  An algorithm for the resource constrained shortest path problem , 1989, Networks.

[23]  Pierre Hansen,et al.  An improved column generation algorithm for minimum sum-of-squares clustering , 2009, Math. Program..

[24]  Jacques Desrosiers,et al.  2-Path Cuts for the Vehicle Routing Problem with Time Windows , 1997, Transp. Sci..

[25]  Michel Gendreau,et al.  An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems , 2004, Networks.

[26]  John E. Mitchell,et al.  Solving real-world linear ordering problems using a primal-dual interior point cutting plane method , 1996, Ann. Oper. Res..

[27]  Giovanni Righini,et al.  New dynamic programming algorithms for the resource constrained elementary shortest path problem , 2008, Networks.

[28]  Guy Desaulniers,et al.  Tabu Search, Partial Elementarity, and Generalized k-Path Inequalities for the Vehicle Routing Problem with Time Windows , 2006, Transp. Sci..

[29]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[30]  BräysyOlli,et al.  Vehicle Routing Problem with Time Windows, Part II , 2005 .

[31]  Jacek Gondzio,et al.  Reoptimization With the Primal-Dual Interior Point Method , 2002, SIAM J. Optim..

[32]  Simon Spoorendonk,et al.  Cut and Column Generation , 2015 .

[33]  Jacek Gondzio,et al.  Further development of multiple centrality correctors for interior point methods , 2008, Comput. Optim. Appl..

[34]  Moshe Dror,et al.  Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW , 1994, Oper. Res..

[35]  Marcus Poggi de Aragão,et al.  Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems , 2010, Math. Program. Comput..

[36]  Cláudio Alves,et al.  Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model , 2011, Eur. J. Oper. Res..

[37]  J. Gondzio HOPDM (version 2.12) — A fast LP solver based on a primal-dual interior point method , 1995 .

[38]  Antonio Frangioni,et al.  Generalized Bundle Methods , 2002, SIAM J. Optim..

[39]  David F. Shanno,et al.  An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming , 2007, Comput. Optim. Appl..

[40]  Roberto Roberti,et al.  Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints , 2012, Eur. J. Oper. Res..

[41]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[42]  Florian A. Potra,et al.  Primal-Dual Affine Scaling Interior Point Methods for Linear Complementarity Problems , 2008, SIAM J. Optim..

[43]  Alain Chabrier,et al.  Vehicle Routing Problem with elementary shortest path based column generation , 2006, Comput. Oper. Res..

[44]  Michel Gendreau,et al.  Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms , 2005, Transp. Sci..

[45]  David Pisinger,et al.  Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows , 2008, Oper. Res..

[46]  Jacques Desrosiers,et al.  Cutting planes for branch‐and‐price algorithms , 2009, Networks.

[47]  Laurence A. Wolsey,et al.  Reformulation and Decomposition of Integer Programs , 2009, 50 Years of Integer Programming.

[48]  Stephen J. Wright,et al.  Warm-Start Strategies in Interior-Point Methods for Linear Programming , 2002, SIAM J. Optim..

[49]  M H Farahi,et al.  AN ALGORITHM FOR THE SHORTEST PATH PROBLEM , 2005 .

[50]  Jacek Gondzio,et al.  New developments in the primal-dual column generation technique , 2013, Eur. J. Oper. Res..

[51]  Jacek Gondzio,et al.  Warm start of the primal-dual method applied in the cutting-plane scheme , 1998, Math. Program..

[52]  Zeger Degraeve,et al.  Optimal Integer Solutions to Industrial Cutting-Stock Problems: Part 2, Benchmark Results , 2003, INFORMS J. Comput..

[53]  Jean-Philippe Vial,et al.  Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method , 2002, Optim. Methods Softw..

[54]  J. Desrosiers,et al.  BRANCH-PRICE-AND-CUT ALGORITHMS , 2011 .

[55]  Brian Borchers,et al.  Using an interior point method in a branch and bound algorithm for integer programming July , 2007 .

[56]  William R. Cook,et al.  A Parallel Cutting-Plane Algorithm for the Vehicle Routing Problem With Time Windows , 1999 .

[57]  Jacques Desrosiers,et al.  The Vehicle Routing Problem with Time Windows: State-of-the-Art Exact Solution Methods , 2010 .

[58]  Jacques Desrosiers,et al.  A proximal trust-region algorithm for column generation stabilization , 2003, Comput. Oper. Res..

[59]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.