Consistent transformations of belief functions

Consistent belief functions represent collections of coherent or non-contradictory pieces of evidence, but most of all they are the counterparts of consistent knowledge bases in belief calculus. The use of consistent transformations cs[ ] in a reasoning process to guarantee coherence can therefore be desirable, and generalizes similar techniques in classical logics. Transformations can be obtained by minimizing an appropriate distance measure between the original belief function and the collection of consistent ones. We focus here on the case in which distances are measured using classical Lp norms, in both the \mass space" and the \belief space" representation of belief functions. While mass consistent approximations reassign the mass not focussed on a chosen element of the frame either to the whole frame or to all supersets of the element on an equal basis, approximations in the belief space do distinguish these focal elements according to the \focussed consistent transformation" principle. The dierent approximations are interpreted and compared, with the help of examples.

[1]  Didier Dubois,et al.  Consonant approximations of belief functions , 1990, Int. J. Approx. Reason..

[2]  Fabio Cuzzolin Two New Bayesian Approximations of Belief Functions Based on Convex Geometry , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Fabio Cuzzolin,et al.  An Interpretation of Consistent Belief Functions in Terms of Simplicial Complexes , 2008, ISAIM.

[4]  Quan Pan,et al.  A New Method to Determine Evidence Distance , 2010, 2010 International Conference on Computational Intelligence and Software Engineering.

[5]  Bernadette Bouchon-Meunier,et al.  A Similarity Measure between Basic Belief Assignments , 2006, 2006 9th International Conference on Information Fusion.

[6]  Philippe Smets,et al.  Belief Functions versus Probability Functions , 1988, IPMU.

[7]  Diderik Batens Frontiers of Paraconsistent Logic , 2000 .

[8]  Peter Gärdenfors,et al.  Knowledge in Flux: Modeling the Dynamics of Epistemic States , 2008 .

[9]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[10]  Andrés Perea,et al.  A Model of Minimal Probabilistic Belief Revision , 2009 .

[11]  Fabio Cuzzolin,et al.  A Geometric Approach to the Theory of Evidence , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[12]  Jeff B. Paris,et al.  Information from Inconsistent Knowledge: A Probability Logic Approach , 2008, Interval / Probabilistic Uncertainty and Non-Classical Logics.

[13]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[14]  Philippe Smets,et al.  The Nature of the Unnormalized Beliefs Encountered in the Transferable Belief Model , 1992, UAI.

[15]  Weiru Liu,et al.  Analyzing the degree of conflict among belief functions , 2006, Artif. Intell..

[16]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[17]  G. Montazer,et al.  A New Evidential Distance Measure Based on Belief Intervals , 2010 .

[18]  Prakash P. Shenoy,et al.  A Comparison of Bayesian and Belief Function Reasoning , 2003, Inf. Syst. Frontiers.

[20]  D. Lewis Probabilities of Conditionals and Conditional Probabilities , 1976 .

[21]  Milan Daniel On transformations of belief functions to probabilities , 2006, Int. J. Intell. Syst..

[22]  Fabio Cuzzolin,et al.  Lp consonant approximation of belief functions in the mass space , 2011 .

[23]  Fabio Cuzzolin On consistent belief functions , 2009 .

[24]  Alessandro Saffiotti A Belief-Function Logic , 1992, AAAI.

[25]  Weiru Liu,et al.  Fusion rules for merging uncertain information , 2006, Inf. Fusion.

[26]  Lorenzo Peña,et al.  Paraconsistent logic: essays on the inconsistent , 1990 .

[27]  Rolf Haenni,et al.  Towards a Unifying Theory of Logical and Probabilistic Reasoning , 2005, ISIPTA.

[28]  Wen Jiang,et al.  A New Method to Determine Evidence Discounting Coefficient , 2008, ICIC.

[29]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[30]  Fabio Cuzzolin Geometric conditioning of belief functions , 2009 .

[31]  Kin Chung Lo Agreement and stochastic independence of belief functions , 2006, Math. Soc. Sci..

[32]  Fabio Cuzzolin,et al.  $L_{p}$ Consonant Approximations of Belief Functions , 2014, IEEE Transactions on Fuzzy Systems.

[33]  Fabio Cuzzolin,et al.  The geometry of consonant belief functions: Simplicial complexes of necessity measures , 2010, Fuzzy Sets Syst..

[34]  Philippe Smets,et al.  The degree of belief in a fuzzy event , 1981, Inf. Sci..

[35]  Fabio Cuzzolin Geometric conditional belief functions in the belief space , 2011 .

[36]  Lorenzo Peña Reseña del libro: Graham Priest, Richard Routley & Jean Norman (eds), Paraconsistent Logic: Essays on the Inconsistent [Reseña bibliográfica] , 1990 .

[37]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[38]  Ruggero Frezza,et al.  Geometric analysis of belief space and conditional subspaces , 2001, ISIPTA.

[39]  George J. Klir,et al.  Measures of discord in the Dempster-Shafer theory , 1993, Inf. Sci..

[40]  Benson Mates,et al.  Elementary Logic , 1965 .

[41]  Frans Voorbraak,et al.  A Computationally Efficient Approximation of Dempster-Shafer Theory , 1988, Int. J. Man Mach. Stud..

[42]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .