fMRI data analysis using a novel clustering technique

This paper marks the beginning of a new way of analyzing fMRI images. The idea is to model these images with a mixture of Gaussians, that allows to carry out some complex tasks more easily. One application of this approach is the artifacts subtraction. It consists of removing certain high-intensity voxels that are not relevant to the analysis of the images. On the other hand, this approach provides a way to perform the feature extraction process that avoids the small sample size problem in classification tasks.

[1]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[2]  Shiri Gordon,et al.  Unsupervised image-set clustering using an information theoretic framework , 2006, IEEE Transactions on Image Processing.

[3]  Juan Manuel Górriz,et al.  Hard C-means clustering for voice activity detection , 2006, Speech Commun..

[4]  G. Lohmann,et al.  Model‐based clustering of meta‐analytic functional imaging data , 2008, Human brain mapping.

[5]  Robert P. W. Duin,et al.  Classifiers in almost empty spaces , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[6]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[7]  P. Padilla,et al.  Automatic selection of ROIs using a model-based clustering approach , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[8]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[9]  J. Ramírez,et al.  SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting , 2009, Neuroscience Letters.

[10]  M. Aladjem Projection pursuit mixture density estimation , 2005, IEEE Transactions on Signal Processing.

[11]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[12]  Juan Manuel Górriz,et al.  Alzheimer's diagnosis using eigenbrains and support vector machines , 2009 .

[13]  I. Álvarez,et al.  SVM-based CAD system for early detection of the Alzheimer's disease using kernel PCA and LDA , 2009, Neuroscience Letters.

[14]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[15]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[16]  C G Puntonet,et al.  An effective cluster-based model for robust speech detection and speech recognition in noisy environments. , 2006, The Journal of the Acoustical Society of America.

[17]  A. Lassl,et al.  Automatic selection of ROIs in functional imaging using Gaussian mixture models , 2009, Neuroscience Letters.

[18]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[19]  J. M. Gorriz,et al.  Clustering approach for the classificarion of SPECT images , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.