Monte-Carlo Tree Search for the Maximum Satisfiability Problem

Incomplete algorithms for the Maximum Satisfiability (MaxSAT) problem use a hill climbing approach in tandem with various mechanisms that prevent search stagnation. These solvers’ conflicting goals of maintaining search mobility while discovering high quality solutions constitute an exploration-exploitation dilemma, a problem which has been tackled with great success in recent years using Monte-Carlo Tree Search (MCTS) methods. We apply MCTS to the domain of MaxSAT using various stochastic local search (SLS) algorithms for leaf node value estimation, thus offering a novel hybrid alternative to established complete and incomplete solution techniques. Our algorithm outperforms baseline SLS algorithms like Walksat and Novelty on most problem instances from the 2015 MaxSAT Evaluation. It also outdoes CCLS, a state-of-the-art incomplete MaxSAT solver, on a number of challenging industrial instances from the 2015 MaxSAT Evaluation.

[1]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[2]  Joao Marques-Silva,et al.  The Impact of Branching Heuristics in Propositional Satisfiability Algorithms , 1999, EPIA.

[3]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[4]  David Silver,et al.  Combining online and offline knowledge in UCT , 2007, ICML '07.

[5]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[6]  Regina Barzilay,et al.  Learning to Win by Reading Manuals in a Monte-Carlo Framework , 2011, ACL.

[7]  Ashish Sabharwal,et al.  Guiding Combinatorial Optimization with UCT , 2012, CPAIOR.

[8]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[9]  Michèle Sebag,et al.  Bandit-Based Search for Constraint Programming , 2013, CP.

[10]  Paolo Ciancarini,et al.  Monte Carlo tree search in Kriegspiel , 2010, Artif. Intell..

[11]  Joao Marques-Silva,et al.  Iterative and core-guided MaxSAT solving: A survey and assessment , 2013, Constraints.

[12]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.

[13]  Kaile Su,et al.  Local search for Boolean Satisfiability with configuration checking and subscore , 2013, Artif. Intell..

[14]  Gerald Tesauro,et al.  Monte-Carlo simulation balancing , 2009, ICML '09.

[15]  Thomas Stützle,et al.  Systematic vs. Local Search for SAT , 1999, KI.

[16]  Bart Selman,et al.  Applying UCT to Boolean Satisfiability , 2011, SAT.

[17]  Djamal Habet,et al.  A Hybrid Approach for SAT , 2002, CP.

[18]  Holger H. Hoos,et al.  UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.

[19]  Lakhdar Sais,et al.  Boosting complete techniques thanks to local search methods , 1998, Annals of Mathematics and Artificial Intelligence.

[20]  Alan Fern,et al.  UCT for Tactical Assault Planning in Real-Time Strategy Games , 2009, IJCAI.

[21]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[22]  Bart Selman,et al.  Trade-Offs in Sampling-Based Adversarial Planning , 2011, ICAPS.

[23]  Weixiong Zhang,et al.  Backbone Guided Local Search for Maximum Satisfiability , 2003, IJCAI.

[24]  Yngvi Björnsson,et al.  Simulation-Based Approach to General Game Playing , 2008, AAAI.

[25]  Wei Wu,et al.  CCLS: An Efficient Local Search Algorithm for Weighted Maximum Satisfiability , 2015, IEEE Transactions on Computers.

[26]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .