A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem

In this paper we develop the a priori analysis of a mixed finite element method for the coupling of fluid flow with porous media flow. Flows are governed by the Navier–Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. We consider the standard mixed formulation in the Navier–Stokes domain and the dual-mixed one in the Darcy region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The finite element subspaces defining the discrete formulation employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, piecewise constants for the pressures, and continuous piecewise linear elements for the Lagrange multiplier. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence are reported.

[1]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[2]  G. Gatica,et al.  A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .

[3]  Abdellatif Agouzal,et al.  An extension theorem for equilibrium finite elements spaces , 1996 .

[4]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[5]  Vivette Girault,et al.  Mortar multiscale finite element methods for Stokes–Darcy flows , 2014, Numerische Mathematik.

[6]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[7]  J. Zeman,et al.  Localization analysis of an energy-based fourth-order gradient plasticity model , 2015, 1501.06788.

[8]  VIVETTE GIRAULT,et al.  DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..

[9]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[10]  S. Meddahi,et al.  Strong coupling of finite element methods for the Stokes–Darcy problem , 2012, 1203.4717.

[11]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[12]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[13]  Gabriel N. Gatica,et al.  An augmented mixed-primal finite element method for a coupled flow-transport problem , 2015 .

[14]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[15]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[16]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[17]  Santiago Badia,et al.  Stokes, Maxwell and Darcy , 2012 .

[18]  I. Babuska,et al.  On the mixed finite element method with Lagrange multipliers , 2003 .

[19]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[20]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[21]  Wenbin Chen,et al.  A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System , 2011, SIAM J. Numer. Anal..

[22]  Ivan Yotov,et al.  Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.

[23]  Gabriel N. Gatica,et al.  An Augmented Mixed Finite Element Method for the Navier-Stokes Equations with Variable Viscosity , 2016, SIAM J. Numer. Anal..

[24]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[25]  M. Fortin,et al.  Mixed and hybrid finite element methods for convection-diffusion equations and their relationships with finite volume , 2005 .

[26]  Marco Discacciati,et al.  Domain decomposition methods for the coupling of surface and groundwater flows , 2004 .

[27]  Trygve K. Karper,et al.  Unified finite element discretizations of coupled Darcy–Stokes flow , 2009 .

[28]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[29]  Francisco-Javier Sayas,et al.  Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem , 2011, Math. Comput..

[30]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[31]  Ricardo Ruiz-Baier,et al.  A mixed finite element method for Darcy's equations with pressure dependent porosity , 2015, Math. Comput..

[32]  Xiaoming He,et al.  Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition , 2011, Numerische Mathematik.

[33]  Alfio Quarteroni,et al.  Numerical analysis of the Navier–Stokes/Darcy coupling , 2010, Numerische Mathematik.

[34]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[35]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[36]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[37]  Santiago Badia,et al.  Stokes, Maxwell and Darcy , 2012 .

[38]  Ricardo Ruiz-Baier,et al.  An augmented stress‐based mixed finite element method for the steady state Navier‐Stokes equations with nonlinear viscosity , 2017 .

[39]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[40]  Mark Ainsworth,et al.  Discrete extension operators for mixed finite element spaces on locally refined meshes , 2016, Math. Comput..

[41]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[42]  Francisco-Javier Sayas,et al.  A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow , 2012 .

[43]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[44]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[45]  G. Gatica,et al.  Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem , 2016 .

[46]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[47]  Salim Meddahi,et al.  A Coupled Mixed Finite Element Method for the Interaction Problem between an Electromagnetic Field and an Elastic Body , 2010, SIAM J. Numer. Anal..

[48]  Francisco-Javier Sayas,et al.  Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem , 2011 .