Path integrals and symmetry breaking for optimal control theory
暂无分享,去创建一个
[1] E. Madelung,et al. Quantentheorie in hydrodynamischer Form , 1927 .
[2] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[3] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[4] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[5] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[6] W. Miller. Path integral representation of the reaction rate constant in quantum mechanical transition state theory , 1975 .
[7] W. Fleming,et al. Deterministic and Stochastic Optimal Control , 1975 .
[8] Robert E. Kalaba,et al. Selected Papers On Mathematical Trends In Control Theory , 1977 .
[9] W. Fleming. Exit probabilities and optimal stochastic control , 1977 .
[10] P. Wolynes,et al. Convenient and accurate discretized path integral methods for equilibrium quantum mechanical calculations , 1981 .
[11] Francesco Guerra,et al. Structural aspects of stochastic mechanics and stochastic field theory , 1981 .
[12] C. Morris,et al. Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.
[13] J. Doll,et al. A Monte Carlo method for quantum Boltzmann statistical mechanics using Fourier representations of path integrals , 1984 .
[14] R. Feynman,et al. Effective classical partition functions. , 1986, Physical review. A, General physics.
[15] Mario Lefebvre. Optimal control of an Ornstein-Uhlenbeck process , 1987 .
[16] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[17] H. Kleinert. Path Integrals in Quantum Mechanics Statistics and Polymer Physics , 1990 .
[18] W. Fleming,et al. Controlled Markov processes and viscosity solutions , 1992 .
[19] Robert F. Stengel,et al. Optimal Control and Estimation , 1994 .
[20] F. Guerra,et al. Introduction to Nelson Stochastic Mechanics as a Model for Quantum Mechanics , 1995 .
[21] Hagen Kleinert,et al. Path Integrals in Quantum Mechanics , 1995 .
[22] Peter Whittle,et al. Optimal Control: Basics and Beyond , 1996 .
[23] X. Zhou,et al. Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .
[24] On the approximation of Feynman-Kac path integrals for quantum statistical mechanics , 2000, cond-mat/0007112.
[25] David Chandler,et al. Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.
[26] Jianfeng Feng,et al. Optimal control of neuronal activity. , 2003, Physical review letters.
[27] Lawrence F. Shampine,et al. Solving ODEs with MATLAB , 2002 .
[28] Luigi M. Ricciardi,et al. On the parameter estimation for diffusion models of single neuron's activities , 1995, Biological Cybernetics.
[29] K. Pakdaman,et al. Random dynamics of the Morris-Lecar neural model. , 2004, Chaos.
[30] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .
[31] Eric T. Shea-Brown,et al. Optimal Inputs for Phase Models of Spiking Neurons , 2006 .