O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation

[1]  N. Simone,et al.  An Ex Vivo Brain Slice Model to Study and Target Breast Cancer Brain Metastatic Tumor Growth. , 2021, Journal of visualized experiments : JoVE.

[2]  T. Golub,et al.  Fatty acid synthesis is required for breast cancer brain metastasis , 2021, Nature Cancer.

[3]  Ted E. Natoli,et al.  A metastasis map of human cancer cell lines , 2020, Nature.

[4]  S. Gygi,et al.  Targeting the cyclin-dependent kinase 5 in metastatic melanoma , 2020, Proceedings of the National Academy of Sciences.

[5]  J. Blenis,et al.  Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. , 2018, Cancer cell.

[6]  M. Ivan,et al.  Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation , 2017, Oncogene.

[7]  L. Hsieh‐Wilson,et al.  Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation. , 2018, Methods in enzymology.

[8]  Shudong Wang,et al.  CDK5 in oncology: recent advances and future prospects. , 2017, Future medicinal chemistry.

[9]  Chad J. Creighton,et al.  UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses , 2017, Neoplasia.

[10]  G. Rao,et al.  Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. , 2017, Molecular cell.

[11]  Alexei Vazquez,et al.  Acetate Recapturing by Nuclear Acetyl-CoA Synthetase 2 Prevents Loss of Histone Acetylation during Oxygen and Serum Limitation , 2017, Cell reports.

[12]  A. Shen,et al.  The O-GlcNAc Modification of CDK5 Involved in Neuronal Apoptosis Following In Vitro Intracerebral Hemorrhage , 2016, Cellular and Molecular Neurobiology.

[13]  Peter Ashwell,et al.  FluxFix: automatic isotopologue normalization for metabolic tracer analysis , 2016, BMC Bioinformatics.

[14]  Christian M. Metallo,et al.  ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch. , 2016, Cell reports.

[15]  J. Bibb,et al.  The Emerging Role of Cdk5 in Cancer. , 2016, Trends in cancer.

[16]  E. Gottlieb,et al.  The metabolic fate of acetate in cancer , 2016, Nature Reviews Cancer.

[17]  M. Reginato,et al.  O-GlcNAcylation in Cancer Biology: Linking Metabolism and Signaling. , 2016, Journal of molecular biology.

[18]  Wen Xin,et al.  Insights into the clinical value of cyclin-dependent kinase 5 in glioma: a retrospective study , 2015, World Journal of Surgical Oncology.

[19]  Pierre J. Magistretti,et al.  A Cellular Perspective on Brain Energy Metabolism and Functional Imaging , 2015, Neuron.

[20]  J. Hanover,et al.  A little sugar goes a long way: The cell biology of O-GlcNAc , 2015, The Journal of cell biology.

[21]  F. Lin,et al.  Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer , 2015, Oncotarget.

[22]  M. Reginato,et al.  mTOR/MYC Axis Regulates O-GlcNAc Transferase Expression and O-GlcNAcylation in Breast Cancer , 2015, Molecular Cancer Research.

[23]  A. Harris,et al.  SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme , 2015, Oncogene.

[24]  R. Fonseca,et al.  Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma. , 2015, Blood.

[25]  A. Harris,et al.  Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress , 2015, Cancer cell.

[26]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[27]  R. Hammer,et al.  Acetate Dependence of Tumors , 2014, Cell.

[28]  R. Deberardinis,et al.  Acetate Is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases , 2014, Cell.

[29]  M. Reginato,et al.  O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. , 2014, Molecular cell.

[30]  John C O'Donnell,et al.  Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters , 2014, The Journal of Neuroscience.

[31]  Jae-Geun Yoon,et al.  High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells , 2012, Oncotarget.

[32]  A. Futatsugi,et al.  Cyclin-dependent kinase 5 regulates E2F transcription factor through phosphorylation of Rb protein in neurons , 2012, Cell cycle.

[33]  Lynda Chin,et al.  Emerging insights into the molecular and cellular basis of glioblastoma. , 2012, Genes & development.

[34]  M. Reginato,et al.  Critical Role of O-Linked β-N-Acetylglucosamine Transferase in Prostate Cancer Invasion, Angiogenesis, and Metastasis* , 2012, The Journal of Biological Chemistry.

[35]  G. Feldmann,et al.  Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models , 2011, Cancer biology & therapy.

[36]  M. Gassmann,et al.  Cdk5 interacts with Hif-1α in neurons: A new hypoxic signalling mechanism? , 2011, Brain Research.

[37]  D. Vocadlo,et al.  Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells , 2011, Nature chemical biology.

[38]  B. S. Manjunath,et al.  Silencing of CDK5 Reduces Neurofibrillary Tangles in Transgenic Alzheimer's Mice , 2010, The Journal of Neuroscience.

[39]  E. Lees,et al.  Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent Kinase Inhibitor , 2010, Molecular Cancer Therapeutics.

[40]  G. Sethi,et al.  Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1 , 2010, Oncogene.

[41]  Y. Yonekura,et al.  Cytosolic acetyl‐CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl‐CoA/acetate metabolism , 2009, Cancer science.

[42]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[43]  Marla Gearing,et al.  Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion , 2008, Proceedings of the National Academy of Sciences.

[44]  Shih-Yi Lin,et al.  Cdk5 Regulates STAT3 Activation and Cell Proliferation in Medullary Thyroid Carcinoma Cells* , 2007, Journal of Biological Chemistry.

[45]  D. Kemp,et al.  Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer's disease regulates insulin gene transcription in pancreatic beta-cells. , 2004, Endocrinology.

[46]  G. Hart,et al.  O-GlcNAc modification: a nutritional sensor that modulates proteasome function. , 2004, Trends in cell biology.

[47]  N. Ip,et al.  Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Michael B. Yaffe,et al.  Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs , 2003, Nucleic Acids Res..

[49]  G. Hart,et al.  Dynamic O-Glycosylation of Nuclear and Cytosolic Proteins , 2002, The Journal of Biological Chemistry.

[50]  S. Urban,et al.  Expression and localization of cyclin-dependent kinase 5 in apoptotic human glioma cells. , 2001, Neuro-oncology.

[51]  G. Hart,et al.  Dynamic Glycosylation of Nuclear and Cytosolic Proteins , 1997, The Journal of Biological Chemistry.

[52]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.