An inverse problem for the Schrödinger equation with variable coefficients and lower order terms

Abstract We study the uniqueness and stability for an inverse problem of Schrodinger equation with variable coefficients and lower order terms. We obtain a Carleman estimate, by which we recover the potential from partial boundary term.

[1]  Xu Zhang,et al.  Exact controllability of semilinear plate equations , 2001 .

[2]  Some Sufficient Conditions for the Controllability of Wave Equations with Variable Coefficients , 2012, 1211.4148.

[3]  V. Isakov Uniqueness and stability in multi-dimensional inverse problems , 1993 .

[4]  Xiaoyu Fu,et al.  Null controllability for the parabolic equation with a complex principal part , 2008, 0805.3808.

[5]  Lucie Baudouin,et al.  Uniqueness and stability in an inverse problem for the Schrödinger equation , 2007 .

[6]  Masahiro Yamamoto,et al.  On a global estimate in a linear inverse hyperbolic problem , 1996 .

[7]  R. Triggiani,et al.  Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part II: L 2(Ω)-estimates , 2004 .

[8]  A. Osses,et al.  Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights , 2008 .

[9]  Boundary controllability for the semilinear Schrödinger equations on Riemannian manifolds , 2010 .

[10]  I. Holopainen Riemannian Geometry , 1927, Nature.

[11]  Victor Isakov,et al.  Inverse Source Problems , 1990 .

[12]  Masahiro Yamamoto,et al.  Global Uniqueness and Stability for a Class of Multidimensional Inverse Hyperbolic Problems with Two Unknowns , 2003 .

[13]  Xu Zhang,et al.  Exact Controllability for Multidimensional Semilinear Hyperbolic Equations , 2007, SIAM J. Control. Optim..

[14]  Masahiro Yamamoto,et al.  Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality , 2010 .

[15]  Masahiro Yamamoto,et al.  Smoothing property in multidimensional inverse hyperbolic problems: applications to uniqueness and stability , 1996 .

[16]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[17]  M. Kubo Identification of the potential term of the wave equation , 1995 .

[18]  A Khaĭdarov,et al.  CARLEMAN ESTIMATES AND INVERSE PROBLEMS FOR SECOND ORDER HYPERBOLIC EQUATIONS , 1987 .

[19]  Masahiro Yamamoto Uniqueness and stability in multidimensional hyperbolic inverse problems , 1999 .

[20]  Masahiro Yamamoto,et al.  Global Lipschitz stability in an inverse hyperbolic problem by interior observations , 2001 .

[21]  L. Rosier,et al.  Inverse problem for the heat equation and the Schrödinger equation on a tree , 2011 .

[22]  Peng-Fei Yao,et al.  On The Observability Inequalities for Exact Controllability of Wave Equations With Variable Coefficients , 1999 .