Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for Discontinuous Galerkin Solutions: Improved Errors Versus Higher-Order Accuracy
暂无分享,去创建一个
[1] Jennifer K. Ryan,et al. Efficient Implementation of Smoothness-Increasing Accuracy-Conserving (SIAC) Filters for Discontinuous Galerkin Solutions , 2012, J. Sci. Comput..
[2] J. Bramble,et al. Higher order local accuracy by averaging in the finite element method , 1977 .
[3] Jennifer K. Ryan,et al. Smoothness-Increasing Accuracy-Conserving (SIAC) Postprocessing for Discontinuous Galerkin Solutions over Structured Triangular Meshes , 2011, SIAM J. Numer. Anal..
[4] Ivo Babuška,et al. Interior maximum norm estimates for finite element discretizations of the Stokes equations , 2007 .
[5] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[6] Jennifer K. Ryan,et al. Postprocessing for the Discontinuous Galerkin Method over Nonuniform Meshes , 2007, SIAM J. Sci. Comput..
[7] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[8] Endre Süli,et al. Enhanced accuracy by post-processing for finite element methods for hyperbolic equations , 2003, Math. Comput..
[9] Peter D. Lax,et al. The computation of discontinuous solutions of linear hyperbolic equations , 1978 .
[10] John E. Osborn,et al. Superconvergence in the generalized finite element method , 2007, Numerische Mathematik.
[11] Jennifer K. Ryan,et al. Position-Dependent Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for Improving Discontinuous Galerkin Solutions , 2011, SIAM J. Sci. Comput..
[12] Ivo Babuška,et al. Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .
[13] John D. Owens,et al. GPU Computing , 2008, Proceedings of the IEEE.
[14] Ivo Babuška,et al. The problem of the selection of an a posteriori error indicator based on smoothening techniques , 1993 .
[15] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..