구문 트리 가지치기 및 소멸 인자 조정을 통한 트리 커널 기반 단백질 간 상호작용 추출 성능 향상

본 논문에서는 기존의 연구에서 시도되었던 것과는 달리, 복잡하고 추출하기가 어려운 다양한 형태의 자질 및 단서 정보가 필요 없는 합성곱 구문 트리 커널 기반의 단백질 간 상호작용 추출 기법을 소개한다. 이 기법의 특징은 단백질 이름 쌍을 포함한 상호작용 포함 후보 문장에 대한 구문 트리만을 이용하여 추출을 시도한다는 것이며 부가적인 자질이나 커널 함수가 불필요하다는 장점이 있다. 이를 기반으로 본 논문의 연구 성과는 다음과 같다. 첫째, 단백질 간 상호작용 추출에 있어서 구문 트리 커널을 적용할 경우 불필요한 문맥 정보를 효과적으로 제거하는 구문 트리 가지치기 작업이 필수적임을 기존 연구 결과와의 성능 비교로써 증명한다. 둘째, 동일한 학습 조건에서 구문 트리 커널의 소멸 인자(decay factor)는 평활인자(smoothing factor)로서 중요한 역할을 하며, 성능 변화의 핵심 요소임을 보인다. 특히 학습 집합의 규모에 따라서 소멸인자가 성능에 미치는 영향력이 상이한 패턴으로 나타남을 제시하였다. 결론적으로 기존의 최신 연구결과로서 주장한 “단일 커널보다 혼합 커널의 성능이 더 뛰어나다”라는 가설이 항상 성립하는 것은 아니라는 것을 합성곱 구문 트리 커널 단독으로 적용하여 높은 성능을 나타냄으로써 보여주었다. 동일한 조건으로 수행한 실험에서 기존의 두 연구 결과에 비해 19.8%, 14%의 성능 개선을 나타내었다.