Transposable elements in mammalian chromatin organization

[1]  L. Mirny,et al.  Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers , 2022, Nature Structural & Molecular Biology.

[2]  S. Mundlos,et al.  Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes , 2022, Cell.

[3]  Lin He,et al.  Mammalian genome innovation through transposon domestication , 2022, Nature Cell Biology.

[4]  Lei S. Qi,et al.  Nested epistasis enhancer networks for robust genome regulation , 2022, Science.

[5]  R. Aiese Cigliano,et al.  LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes , 2022, Science Translational Medicine.

[6]  R. J. Barnett,et al.  3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome , 2022, Cell.

[7]  K. H. Burns,et al.  Repetitive DNA in disease , 2022, Science.

[8]  Joshua F. McMichael,et al.  The Human Pangenome Project: a global resource to map genomic diversity , 2022, Nature.

[9]  J. Wysocka,et al.  Roles of transposable elements in the regulation of mammalian transcription , 2022, Nature Reviews Molecular Cell Biology.

[10]  P. Dimitri,et al.  Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements , 2022, Cells.

[11]  Heather K. Schmidt,et al.  Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes and gene regulation , 2022, bioRxiv.

[12]  Suresh Kumar,et al.  Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective , 2021, Frontiers in Cell and Developmental Biology.

[13]  T. Speed,et al.  A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development , 2021, Cell.

[14]  M. Gelfand,et al.  Single-cell Hi-C data analysis: safety in numbers , 2021, Briefings Bioinform..

[15]  Mitchell R. Vollger,et al.  From telomere to telomere: the transcriptional and epigenetic state of human repeat elements , 2021, bioRxiv.

[16]  C. Feschotte,et al.  Evolution of mouse circadian enhancers from transposable elements , 2021, Genome Biology.

[17]  Michael Q. Zhang,et al.  The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence , 2021, Genome research.

[18]  Ruochi Zhang,et al.  The 3D Genome Structure of Single Cells. , 2021, Annual review of biomedical data science.

[19]  A. Hutchins,et al.  Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE , 2021, Nature Communications.

[20]  K. Ichiyanagi,et al.  B2 SINE Copies Serve as a Transposable Boundary of DNA Methylation and Histone Modifications in the Mouse , 2021, Molecular biology and evolution.

[21]  Wei Xie,et al.  Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome , 2021, Cell Research.

[22]  Zeba Wunderlich,et al.  Enhancer redundancy in development and disease , 2021, Nature Reviews Genetics.

[23]  D. Higgs,et al.  The relationship between genome structure and function , 2020, Nature Reviews Genetics.

[24]  Ting Wang,et al.  Tissue-specific usage of transposable element-derived promoters in mouse development , 2020, Genome biology.

[25]  T. Misteli The Self-Organizing Genome: Principles of Genome Architecture and Function , 2020, Cell.

[26]  Peter A. Jones,et al.  DNA methylation enables transposable element-driven genome expansion , 2020, Proceedings of the National Academy of Sciences.

[27]  Alex A. Pollen,et al.  Cell type-specific 3D epigenomes in the developing human cortex , 2020, Nature.

[28]  Hang He,et al.  Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis , 2020, Nature Communications.

[29]  Adam G. Diehl,et al.  Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes , 2020, Nature Communications.

[30]  Drew R. Schield,et al.  Vertebrate Lineages Exhibit Diverse Patterns of Transposable Element Regulation and Expression across Tissues , 2020, Genome biology and evolution.

[31]  O. Dreesen,et al.  Heterochromatin loss as a determinant of progerin‐induced DNA damage in Hutchinson–Gilford Progeria , 2020, Aging cell.

[32]  J. Wysocka,et al.  Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes , 2020, Philosophical Transactions of the Royal Society B.

[33]  Kathryn O'Neill,et al.  Mobile genomics: tools and techniques for tackling transposons , 2020, Philosophical Transactions of the Royal Society B.

[34]  Prim B. Singh,et al.  On the relations of phase separation and Hi-C maps to epigenetics , 2020, Royal Society Open Science.

[35]  K. Burns Our Conflict with Transposable Elements and Its Implications for Human Disease. , 2020, Annual review of pathology.

[36]  Jing Zhang,et al.  Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize , 2020, PLoS biology.

[37]  Jennifer E. Phillips-Cremins,et al.  On the existence and functionality of topologically associating domains , 2020, Nature Genetics.

[38]  Li-Hsin Chang,et al.  TADs and their borders: free movement or building a wall? , 2019, Journal of molecular biology.

[39]  T. Sexton,et al.  Defining functionally relevant spatial chromatin domains: it's a TAD complicated. , 2019, Journal of molecular biology.

[40]  A. Pombo,et al.  Methods for mapping 3D chromosome architecture , 2019, Nature Reviews Genetics.

[41]  Jiang Liu,et al.  Key role for CTCF in establishing chromatin structure in human embryos , 2019, Nature.

[42]  D. Llères,et al.  CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains , 2019, Genome Biology.

[43]  M. Bühler,et al.  The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites that Emerged from SINE Expansions in Mouse , 2019, Cell.

[44]  E. Giordano,et al.  A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. , 2019, Trends in genetics : TIG.

[45]  L. Lefebvre,et al.  Evolution of imprinting via lineage-specific insertion of retroviral promoters , 2019, Nature Communications.

[46]  S. Mundlos,et al.  Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture , 2019, Nature Genetics.

[47]  Elie N. Farah,et al.  Transcriptionally Active HERV-H Retrotransposons Demarcate Topologically Associating Domains in Human Pluripotent Stem Cells , 2019, Nature Genetics.

[48]  E. Furlong,et al.  Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression , 2019, Nature Genetics.

[49]  J. Herrero,et al.  Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology , 2019, Nature Communications.

[50]  D. Odom,et al.  Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains , 2019, Genome Biology.

[51]  Leonid A. Mirny,et al.  Ultrastructural details of mammalian chromosome architecture , 2019, bioRxiv.

[52]  Philippe Collas,et al.  Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation , 2019, Nature Genetics.

[53]  Nakul M. Shah,et al.  Transposable elements drive widespread expression of oncogenes in human cancers , 2019, Nature Genetics.

[54]  S. Mundlos,et al.  Preformed chromatin topology assists transcriptional robustness of Shh during limb development , 2019, Proceedings of the National Academy of Sciences.

[55]  Ilya M. Flyamer,et al.  Developmentally regulated Shh expression is robust to TAD perturbations , 2019, Development.

[56]  Ting Wang,et al.  Co-opted transposons help perpetuate conserved higher-order chromosomal structures , 2018, Genome Biology.

[57]  J. Han,et al.  Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions , 2018, Genome research.

[58]  G. Bourque,et al.  Ten things you should know about transposable elements , 2018, Genome Biology.

[59]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[60]  G. Karpen,et al.  Heterochromatin: Guardian of the Genome. , 2018, Annual review of cell and developmental biology.

[61]  G. Bourque,et al.  Computational tools to unmask transposable elements , 2018, Nature Reviews Genetics.

[62]  Thomas Gregor,et al.  Dynamic interplay between enhancer-promoter topology and gene activity , 2018, Nature Genetics.

[63]  Neva C. Durand,et al.  The Energetics and Physiological Impact of Cohesin Extrusion , 2018, Cell.

[64]  V. Measday,et al.  Retrotransposon targeting to RNA polymerase III-transcribed genes , 2018, Mobile DNA.

[65]  YounJoon Jung,et al.  Entropic effect of macromolecular crowding enhances binding between nucleosome clutches in heterochromatin, but not in euchromatin , 2018, Scientific Reports.

[66]  G. Glinsky Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells , 2018, Chromosome Research.

[67]  A. Muotri,et al.  Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. , 2017, Cell stem cell.

[68]  B. Lenhard,et al.  Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation , 2017, Nature Communications.

[69]  Matthew E. Gosden,et al.  Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo , 2017, Nature Cell Biology.

[70]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[71]  Yutaka Suzuki,et al.  Supplemental Material Title : Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes , 2017 .

[72]  L. Mirny,et al.  Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization , 2017, Cell.

[73]  T. Sultana,et al.  Integration site selection by retroviruses and transposable elements in eukaryotes , 2017, Nature Reviews Genetics.

[74]  Viviana I. Risca,et al.  Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping , 2016, Nature.

[75]  W. Huber,et al.  The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances , 2016, Developmental cell.

[76]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[77]  V. Tarabykin,et al.  Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate , 2016, PLoS genetics.

[78]  Marzia A. Cremona,et al.  Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis , 2016, PLoS Comput. Biol..

[79]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[80]  Aaron T. L. Lun,et al.  Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations , 2016, Genome research.

[81]  A. Molaro,et al.  Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. , 2016, Current opinion in genetics & development.

[82]  C. Feschotte,et al.  Regulatory evolution of innate immunity through co-option of endogenous retroviruses , 2016, Science.

[83]  A. Cournac,et al.  The 3D folding of metazoan genomes correlates with the association of similar repetitive elements , 2015, Nucleic acids research.

[84]  F. Gage,et al.  Enhancer Divergence and cis-Regulatory Evolution in the Human and Chimp Neural Crest , 2015, Cell.

[85]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[86]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[87]  Tisha Chung,et al.  A family of transposable elements co-opted into developmental enhancers in the mouse neocortex , 2015, Nature Communications.

[88]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[89]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[90]  J. Déjardin,et al.  Constitutive heterochromatin formation and transcription in mammals , 2015, Epigenetics & Chromatin.

[91]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[92]  Zhihai Ma,et al.  Widespread contribution of transposable elements to the innovation of gene regulatory networks , 2014, Genome research.

[93]  K. Ichiyanagi Regulating Pol III transcription to change Pol II transcriptome , 2014, Cell cycle.

[94]  Marc W. Schmid,et al.  Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. , 2014, Molecular cell.

[95]  J. Deursen The role of senescent cells in ageing , 2014, Nature.

[96]  L. Ettwiller,et al.  Functional and topological characteristics of mammalian regulatory domains , 2014, Genome research.

[97]  A. Rodríguez-Baeza,et al.  Programmed Cell Senescence during Mammalian Embryonic Development , 2013, Cell.

[98]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[99]  Sara Hillenmeyer,et al.  Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements , 2013, Aging cell.

[100]  Petr Novák,et al.  RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads , 2013, Bioinform..

[101]  J. Campisi Aging, cellular senescence, and cancer. , 2013, Annual review of physiology.

[102]  Jacques Côté,et al.  Perceiving the epigenetic landscape through histone readers , 2012, Nature Structural &Molecular Biology.

[103]  Kateryna D. Makova,et al.  Rescuing Alu: Recovery of New Inserts Shows LINE-1 Preserves Alu Activity through A-Tail Expansion , 2012, PLoS genetics.

[104]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[105]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[106]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[107]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[108]  Michael D. Wilson,et al.  Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages , 2012, Cell.

[109]  Vincent J. Lynch,et al.  Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals , 2011, Nature Genetics.

[110]  J. Brosius,et al.  Exonization of transposed elements: A challenge and opportunity for evolution. , 2011, Biochimie.

[111]  S. Wright,et al.  Co-evolution between transposable elements and their hosts: a major factor in genome size evolution? , 2011, Chromosome Research.

[112]  Andrew B. Conley,et al.  Epigenetic regulation of transposable element derived human gene promoters. , 2011, Gene.

[113]  U. Moll,et al.  Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes , 2011, Proceedings of the National Academy of Sciences.

[114]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[115]  D. Bourc’his,et al.  Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? , 2010, Heredity.

[116]  Kateryna D Makova,et al.  The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. , 2010, Genome research.

[117]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[118]  E. Liu,et al.  Evolution of the mammalian transcription factor binding repertoire via transposable elements. , 2008, Genome research.

[119]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[120]  Gratien G. Prefontaine,et al.  Developmentally Regulated Activation of a SINE B2 Repeat as a Domain Boundary in Organogenesis , 2007, Science.

[121]  A. Smit,et al.  Functional noncoding sequences derived from SINEs in the mammalian genome. , 2006, Genome research.

[122]  D. Haussler,et al.  A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.

[123]  Dixie L Mager,et al.  Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. , 2003, Trends in genetics : TIG.

[124]  V. Corces,et al.  Visualization of chromatin domains created by the gypsy insulator of Drosophila , 2003, The Journal of cell biology.

[125]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[126]  T. Cremer,et al.  Chromosome territories, nuclear architecture and gene regulation in mammalian cells , 2001, Nature Reviews Genetics.

[127]  David I. K. Martin,et al.  Epigenetic inheritance at the agouti locus in the mouse , 1999, Nature Genetics.

[128]  C. Caggese,et al.  Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[129]  R. Britten,et al.  Regulation of gene expression: possible role of repetitive sequences. , 1979, Science.

[130]  B. Mcclintock The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.

[131]  D. Trono Transposable Elements, Polydactyl Proteins, and the Genesis of Human-Specific Transcription Networks. , 2015, Cold Spring Harbor Symposia on Quantitative Biology.

[132]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[133]  D. Finnegan,et al.  Eukaryotic transposable elements and genome evolution. , 1989, Trends in genetics : TIG.