Geochemical Assessment of Petroleum in Unconventional Resource Systems

[1]  F. Behar,et al.  Chapter 2: Compositional Modeling of Gas Generation from Two Shale Gas Resource Systems: Barnett Shale (United States) and Posidonia Shale (Germany) , 2013 .

[2]  T. Barth,et al.  Interactions between organic acids anions in formation waters and reservoir mineral phases , 1992 .

[3]  B. Tissot,et al.  Role of mineral matrix in kerogen pyrolysis; influence on petroleum generation and migration , 1980 .

[4]  F. Behar,et al.  Pyrolysis-gas chromatography applied to organic geochemistry: Structural similarities between kerogens and asphaltenes from related rock extracts and oils , 1985 .

[5]  W. A. Young,et al.  Expulsion from hydrocarbon sources: the role of organic absorption , 1992 .

[6]  Yongchun Tang,et al.  Artificial maturation of Monterey kerogen (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur , 1995 .

[7]  K. Thompson Compositional regularities common to petroleum reservoir fluids and pyrolysates of asphaltenes and kerogens , 2002 .

[8]  L. Mazéas,et al.  Elaboration of a new compositional kinetic schema for oil cracking , 2008 .

[9]  F. Behar,et al.  Resins and asphaltenes in the generation and migration of petroleum , 1986 .

[10]  Paul J. Flory,et al.  Molecular Size Distribution in Linear Condensation Polymers1 , 1936 .

[11]  W. Kuhn,et al.  Über die Kinetik des Abbaues hochmolekularer Ketten , 1930 .

[12]  B. Horsfield,et al.  Determining the temperature of petroleum formation from the kinetic properties of petroleum asphaltenes , 2000, Nature.

[13]  W. L. Orr Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils , 1986 .

[14]  R. A. Noble,et al.  Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography , 1994 .

[15]  F. Behar,et al.  Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling , 2010 .

[16]  M. Radke The Methylphenanthrene Index (MPI) : a maturity parameter based on aromatic hydrocarbons , 1983 .

[17]  A. Pepper Estimating the petroleum expulsion behaviour of source rocks: a novel quantitative approach , 1991, Geological Society, London, Special Publications.

[18]  F. Behar,et al.  Characterization and quantification of saturates trapped inside kerogen: Implications for pyrolysate composition , 1988 .

[19]  A. Graue,et al.  Volatile organic acids produced during kerogen maturation— Amounts, composition and role in migration of oil , 1988 .

[20]  K. Thompson Gas-condensate migration and oil fractionation in deltaic systems , 1988 .

[21]  D. Jarvie,et al.  Detection of Pay Zones and Pay Quality, Gulf of Mexico: Application of Geochemical Techniques , 2001 .

[22]  S. Kressmann,et al.  Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking , 1992 .

[23]  M. Lewan,et al.  Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite , 2008 .

[24]  D. Baker Organic Geochemistry of Cherokee Group in Southeastern Kansas and Northeastern Oklahoma , 1960 .

[25]  D. Jarvie,et al.  Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment , 2007 .

[26]  Deniz Ertas,et al.  Petroleum Expulsion Part 1. Theory of Kerogen Swelling in Multicomponent Solvents , 2006 .

[27]  Karen Schou Pedersen,et al.  PVT calculations on petroleum reservoir fluids using measured and estimated compositional data for the plus fraction , 1992 .

[28]  B. Horsfield,et al.  The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion , 2015 .

[29]  R. Patience,et al.  Application of light hydrocarbons (C4–C13) to oil/source rock correlations:: a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway , 1998 .