Transcriptional regulation by AIRE: molecular mechanisms of central tolerance

The negative selection of T cells in the thymus is necessary for the maintenance of self tolerance. Medullary thymic epithelial cells have a key function in this process as they express a large number of tissue-specific self antigens that are presented to developing T cells. Mutations in the autoimmune regulator (AIRE) protein cause a breakdown of central tolerance that is associated with decreased expression of self antigens in the thymus. In this Review, we discuss the role of AIRE in the thymus and recent advances in our understanding of how AIRE might function at the molecular level to regulate gene expression.

[1]  L. Peltonen,et al.  Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels , 2005, The Journal of experimental medicine.

[2]  A. West,et al.  Autoimmune regulator induced changes in the gene expression profile of human monocyte-dendritic cell-lineage. , 2004, Molecular immunology.

[3]  N. Shimizu,et al.  Mitogen-activated protein kinase pathway controls autoimmune regulator (AIRE) gene expression in granulo-monocyte colony stimulating factor (GM-CSF)-stimulated myelomonocytic leukemia OTC-4 cells. , 2005, Immunology letters.

[4]  L. Peltonen,et al.  Critical immunological pathways are downregulated in APECED patient dendritic cells , 2008, Journal of Molecular Medicine.

[5]  J. Perheentupa Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. , 2006, The Journal of clinical endocrinology and metabolism.

[6]  M. Matsumoto Transcriptional regulation in thymic epithelial cells for the establishment of self tolerance , 2007, Archivum Immunologiae et Therapiae Experimentalis.

[7]  J. She,et al.  Mapping DNA-binding domains of the autoimmune regulator protein. , 2005, Biochemical and biophysical research communications.

[8]  G. Anderson,et al.  Generating intrathymic microenvironments to establish T-cell tolerance , 2007, Nature Reviews Immunology.

[9]  Mark S. Anderson,et al.  Spontaneous autoimmunity prevented by thymic expression of a single self-antigen , 2006, The Journal of experimental medicine.

[10]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[11]  Ana Pombo,et al.  Functional organisation of the genome during interphase. , 2007, Current opinion in genetics & development.

[12]  Li Wu,et al.  Developmental pathway of CD4+CD8− medullary thymocytes during mouse ontogeny and its defect in Aire−/− mice , 2007, Proceedings of the National Academy of Sciences.

[13]  P. Peterson,et al.  The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression , 2008, EMBO Reports.

[14]  P. Peterson,et al.  Subcellular Localization of the Autoimmune Regulator Protein , 2001, The Journal of Biological Chemistry.

[15]  L. Peltonen,et al.  Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. , 2002, Human molecular genetics.

[16]  M. Halonen,et al.  Functional analysis of SAND mutations in AIRE supports dominant inheritance of the G228W mutation , 2005, Human mutation.

[17]  L. Peltonen,et al.  Gene Dosage–limiting Role of Aire in Thymic Expression, Clonal Deletion, and Organ-specific Autoimmunity , 2004, The Journal of experimental medicine.

[18]  N. Shimizu,et al.  AIRE Functions As an E 3 Ubiquitin Ligase , 2004 .

[19]  L. Peltonen,et al.  Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. , 2005, Journal of autoimmunity.

[20]  C. Marcocci,et al.  A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. , 2001, The Journal of clinical endocrinology and metabolism.

[21]  C. Benoist,et al.  B cells are required for Aire-deficient mice to develop multi-organ autoinflammation: A therapeutic approach for APECED patients , 2008, Proceedings of the National Academy of Sciences.

[22]  S. Akira,et al.  Essential Role of IκB Kinase α in Thymic Organogenesis Required for the Establishment of Self-Tolerance1 , 2006, The Journal of Immunology.

[23]  H. Scott,et al.  Sequential phases in the development of Aire‐expressing medullary thymic epithelial cells involve distinct cellular input , 2008, European Journal of Immunology.

[24]  A. Cao,et al.  Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity. , 2008, Molecular immunology.

[25]  E. Palmer,et al.  Normal Thymic Architecture and Negative Selection Are Associated with Aire Expression, the Gene Defective in the Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED)1 , 2000, The Journal of Immunology.

[26]  Xinbin Chen,et al.  The proline-rich domain in p63 is necessary for the transcriptional and apoptosis-inducing activities of TAp63 , 2008, Oncogene.

[27]  C. Hughes,et al.  Of Mice and Not Men: Differences between Mouse and Human Immunology , 2004, The Journal of Immunology.

[28]  M. Flajnik,et al.  Evolutionarily conserved and divergent regions of the Autoimmune Regulator (Aire) gene: a comparative analysis , 2008, Immunogenetics.

[29]  Mark S. Anderson,et al.  Effector Mechanisms of the Autoimmune Syndrome in the Murine Model of Autoimmune Polyglandular Syndrome Type 11 , 2008, The Journal of Immunology.

[30]  Michael J. Bevan,et al.  Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation , 2004, The Journal of experimental medicine.

[31]  L. Peltonen,et al.  The Autoimmune Regulator Directly Controls the Expression of Genes Critical for Thymic Epithelial Function , 2007, The Journal of Immunology.

[32]  L. Peltonen,et al.  Localization of the APECED protein in distinct nuclear structures. , 1999, Human molecular genetics.

[33]  C. Ware,et al.  NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway. , 2006, The Journal of clinical investigation.

[34]  L. Klein,et al.  Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells , 2007, Nature Immunology.

[35]  H. Takayanagi,et al.  The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. , 2008, Immunity.

[36]  B. Kyewski,et al.  Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells , 2007, European journal of immunology.

[37]  M. Vihinen,et al.  APECED‐causing mutations in AIRE reveal the functional domains of the protein , 2004, Human mutation.

[38]  W. Reith,et al.  Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. , 2008, Immunity.

[39]  S. Jameson,et al.  Central tolerance: learning self-control in the thymus , 2005, Nature Reviews Immunology.

[40]  L. Peltonen,et al.  Aire regulates negative selection of organ-specific T cells , 2003, Nature Immunology.

[41]  Kazuhiko Yamamoto,et al.  Aire downregulates multiple molecules that have contradicting immune-enhancing and immune-suppressive functions. , 2004, Biochemical and biophysical research communications.

[42]  R. Uibo,et al.  Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes , 2008, Blood.

[43]  S. Antonarakis,et al.  Isolation and characterization of the mouse Aire gene. , 1999, Biochemical and biophysical research communications.

[44]  S. Galande,et al.  The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. , 2007, Current opinion in genetics & development.

[45]  Catherine L. Worth,et al.  AIRE's CARD Revealed, a New Structure for Central Tolerance Provokes Transcriptional Plasticity* , 2008, Journal of Biological Chemistry.

[46]  H. Kangas,et al.  The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin α molecules , 2006, The FEBS journal.

[47]  P. Peterson,et al.  Hypothetical review: thymic aberrations and type‐I interferons; attempts to deduce autoimmunizing mechanisms from unexpected clues in monogenic and paraneoplastic syndromes , 2008, Clinical and experimental immunology.

[48]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[49]  D. Hanahan,et al.  Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. , 1998, Current opinion in immunology.

[50]  C. Benoist,et al.  AIRE and APECED: molecular insights into an autoimmune disease , 2005, Immunological reviews.

[51]  L. Peltonen,et al.  Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. , 2008, The New England journal of medicine.

[52]  E. Kalkhoven,et al.  CBP and p300: HATs for different occasions. , 2004, Biochemical pharmacology.

[53]  Mark S. Anderson,et al.  The cellular mechanism of Aire control of T cell tolerance. , 2005, Immunity.

[54]  K. Nakayama,et al.  Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. , 2006, The Journal of clinical investigation.

[55]  Atif Shahab,et al.  Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. , 2007, Cell stem cell.

[56]  C. Benoist,et al.  Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells , 2004, Nature Immunology.

[57]  T. Nomura,et al.  NF-κB-Inducing Kinase Establishes Self-Tolerance in a Thymic Stroma-Dependent Manner1 , 2004, The Journal of Immunology.

[58]  C. Benoist,et al.  Chromosomal clustering of genes controlled by the aire transcription factor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  C. Benoist,et al.  Ectopic expression of peripheral-tissue antigens in the thymic epithelium: Probabilistic, monoallelic, misinitiated , 2008, Proceedings of the National Academy of Sciences.

[60]  T. Gibson,et al.  The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation , 2001, Nature Structural Biology.

[61]  T. Misteli Beyond the Sequence: Cellular Organization of Genome Function , 2011 .

[62]  R. Savkur,et al.  The coactivator LXXLL nuclear receptor recognition motif. , 2004, The journal of peptide research : official journal of the American Peptide Society.

[63]  N. Shimizu,et al.  AIRE Functions As an E3 Ubiquitin Ligase , 2004, The Journal of experimental medicine.

[64]  S. Turley,et al.  Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self , 2007, Nature Immunology.

[65]  N. Shimizu,et al.  Expression of AIRE gene in peripheral monocyte/dendritic cell lineage. , 2002, Immunology letters.

[66]  B. Kyewski,et al.  Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism , 2008, Proceedings of the National Academy of Sciences.

[67]  Alfonso Valencia,et al.  Are promyelocytic leukaemia protein nuclear bodies a scaffold for caspase-2 programmed cell death? , 2007, Trends in biochemical sciences.

[68]  T. Nomura,et al.  Development of Autoimmunity against Transcriptionally Unrepressed Target Antigen in the Thymus of Aire-Deficient Mice1 , 2005, The Journal of Immunology.

[69]  M J Sternberg,et al.  PML bodies associate specifically with the MHC gene cluster in interphase nuclei. , 2001, Journal of cell science.

[70]  S. Antonarakis,et al.  Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. , 1999, Biochemical and biophysical research communications.

[71]  D. Gray,et al.  Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. , 2006, Blood.

[72]  Mark S. Anderson,et al.  Apoptosis in Spermatogenesis Expression of Aire and the Early Wave of , 2022 .

[73]  J. Chiche,et al.  Sp110 Localizes to the PML-Sp100 Nuclear Body and May Function as a Nuclear Hormone Receptor Transcriptional Coactivator , 2000, Molecular and Cellular Biology.

[74]  Leena Peltonen,et al.  Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. , 2002, Human molecular genetics.

[75]  G. Gillard,et al.  Features of Medullary Thymic Epithelium Implicate Postnatal Development in Maintaining Epithelial Heterogeneity and Tissue-Restricted Antigen Expression1 , 2006, The Journal of Immunology.

[76]  H. Takayanagi,et al.  The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. , 2008, Immunity.

[77]  N. Shimizu,et al.  Subcellular Expression of Autoimmune Regulator Is Organized in a Spatiotemporal Manner* , 2004, Journal of Biological Chemistry.

[78]  K. Jones,et al.  The multi-tasking P-TEFb complex. , 2008, Current opinion in cell biology.

[79]  Y. Takahama,et al.  Journey through the thymus: stromal guides for T-cell development and selection , 2006, Nature Reviews Immunology.

[80]  A. Davoodi-Semiromi,et al.  The Autoimmune Regulator (AIRE) Is a DNA-binding Protein* , 2001, The Journal of Biological Chemistry.

[81]  A. Miettinen,et al.  Does the deficiency of Aire in mice really resemble human APECED? , 2007, Nature Reviews Immunology.

[82]  Li Wu,et al.  A Specific Anti-Aire Antibody Reveals Aire Expression Is Restricted to Medullary Thymic Epithelial Cells and Not Expressed in Periphery1 , 2008, The Journal of Immunology.

[83]  L. Peltonen,et al.  Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. , 2000, American journal of human genetics.

[84]  Mark S. Anderson,et al.  What's new in the Aire? , 2007, Trends in immunology.

[85]  G. Gillard,et al.  Contrasting models of promiscuous gene expression by thymic epithelium , 2005, The Journal of experimental medicine.

[86]  S. Antonarakis,et al.  The Autoimmune Regulator Protein Has Transcriptional Transactivating Properties and Interacts with the Common Coactivator CREB-binding Protein* , 2000, The Journal of Biological Chemistry.

[87]  N. Minato,et al.  Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin , 2007, Nature Immunology.

[88]  P. Peterson,et al.  Anti-Interferon Autoantibodies in Autoimmune Polyendocrinopathy Syndrome Type 1 , 2006, PLoS medicine.

[89]  X. Ke,et al.  An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus , 2007, Nature.

[90]  R. Getts,et al.  DNA-PK-dependent binding of DNA ends to plasmids containing nuclear matrix attachment region DNA sequences: evidence for assembly of a repair complex. , 2002, Nucleic acids research.

[91]  A. Rosenwald,et al.  Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS‐1) , 2007, The Journal of pathology.

[92]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[93]  M. Lipinski,et al.  Chromatin domains and regulation of transcription. , 2007, Journal of molecular biology.

[94]  H. Sasaki,et al.  Expression of AIRE in thymocytes and peripheral lymphocytes , 2008, Autoimmunity.

[95]  S. Antonarakis,et al.  RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB‐deficient and in NOD mouse , 2000, European journal of immunology.

[96]  P. Peterson,et al.  DNA-PK contributes to the phosphorylation of AIRE: Importance in transcriptional activity , 2008, Biochimica et biophysica acta.

[97]  L. Peltonen,et al.  Aire-Dependent Alterations in Medullary Thymic Epithelium Indicate a Role for Aire in Thymic Epithelial Differentiation1 , 2007, The Journal of Immunology.

[98]  A. Dejean,et al.  Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus , 2007, Nature Cell Biology.

[99]  A. Marx,et al.  Cooperative activation of transcription by autoimmune regulator AIRE and CBP. , 2005, Biochemical and biophysical research communications.

[100]  Or Gozani,et al.  Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity , 2008, Proceedings of the National Academy of Sciences.

[101]  Mark S. Anderson,et al.  Modifier loci condition autoimmunity provoked by Aire deficiency , 2005, The Journal of experimental medicine.

[102]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[103]  L. Klein,et al.  A central role for central tolerance. , 2006, Annual review of immunology.

[104]  C. Benoist,et al.  Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire , 2007, The Journal of experimental medicine.

[105]  Naděžda Brdičková,et al.  AIRE Recruits P-TEFb for Transcriptional Elongation of Target Genes in Medullary Thymic Epithelial Cells , 2007, Molecular and Cellular Biology.

[106]  Howard Y. Chang,et al.  Deletional Tolerance Mediated by Extrathymic Aire-Expressing Cells , 2008, Science.

[107]  M. Juan,et al.  Insulin alleles and autoimmune regulator (AIRE) gene expression both influence insulin expression in the thymus. , 2005, Journal of autoimmunity.

[108]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[109]  P. Peterson,et al.  Modulation of Aire regulates the expression of tissue-restricted antigens , 2008, Molecular immunology.

[110]  Howard Y. Chang,et al.  Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. , 2008, The Journal of clinical investigation.

[111]  M. Bottomley,et al.  Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. , 2003, Molecular endocrinology.

[112]  B. Brors,et al.  Medullary Epithelial Cells of the Human Thymus Express a Highly Diverse Selection of Tissue-specific Genes Colocalized in Chromosomal Clusters , 2004, The Journal of experimental medicine.

[113]  R. Melamed,et al.  The variable immunological self: Genetic variation and nongenetic noise in Aire-regulated transcription , 2008, Proceedings of the National Academy of Sciences.

[114]  Pamela A. Silver,et al.  Coupling and coordination in gene expression processes: a systems biology view , 2008, Nature Reviews Genetics.

[115]  J. Penninger,et al.  RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla , 2007, The Journal of Experimental Medicine.

[116]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[117]  Rosa Bernardi,et al.  Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies , 2007, Nature Reviews Molecular Cell Biology.

[118]  L. Peltonen,et al.  An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains , 1997, Nature Genetics.

[119]  Shinsei Minoshima,et al.  Positional cloning of the APECED gene , 1997, Nature Genetics.

[120]  B. Simon,et al.  NMR Structure of the First PHD Finger of Autoimmune Regulator Protein (AIRE1) , 2005, Journal of Biological Chemistry.

[121]  J. Seeler,et al.  Functional interaction of AIRE with PIAS1 in transcriptional regulation. , 2008, Molecular immunology.

[122]  C. Benoist,et al.  A decade of AIRE , 2007, Nature Reviews Immunology.

[123]  D. Patel,et al.  AIRE recruits multiple transcriptional components to specific genomic regions through tethering to nuclear matrix. , 2006, Molecular immunology.

[124]  Morgan Huse,et al.  The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation , 2007 .

[125]  J. Mellor It Takes a PHD to Read the Histone Code , 2006, Cell.

[126]  H. Lehrach,et al.  AIRE encodes a nuclear protein co-localizing with cytoskeletal filaments: altered sub-cellular distribution of mutants lacking the PHD zinc fingers. , 1999, Human molecular genetics.

[127]  L. Klein,et al.  Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self , 2001, Nature Immunology.

[128]  Mark S. Anderson,et al.  Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein , 2002, Science.

[129]  L. Peltonen,et al.  Aire-deficient mice develop hematopoetic irregularities and marginal zone B-cell lymphoma. , 2006, Blood.

[130]  C. Benoist,et al.  Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity , 2007, Proceedings of the National Academy of Sciences.

[131]  S. Maeda,et al.  Dependence of Self-Tolerance on TRAF6-Directed Development of Thymic Stroma , 2005, Science.

[132]  S. Yokoyama,et al.  NMR Structure of the N-terminal Domain of SUMO Ligase PIAS1 and Its Interaction with Tumor Suppressor p53 and A/T-rich DNA Oligomers* , 2004, Journal of Biological Chemistry.

[133]  A. Farr,et al.  Alterations of the Medullary Epithelial Compartment in the Aire-Deficient Thymus: Implications for Programs of Thymic Epithelial Differentiation12 , 2008, The Journal of Immunology.

[134]  Alexander van Oudenaarden,et al.  Stochastic Gene Expression: from Single Molecules to the Proteome This Review Comes from a Themed Issue on Chromosomes and Expression Mechanisms Edited Measuring Noise Mrna Fluctuations , 2022 .

[135]  L. Peltonen,et al.  Increased antigen presenting cell‐mediated T cell activation in mice and patients without the autoimmune regulator , 2006, European journal of immunology.

[136]  L. Peltonen,et al.  Aire deficient mice do not develop the same profile of tissue-specific autoantibodies as APECED patients. , 2006, Journal of autoimmunity.