Corrigendum: Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes

[1]  D. S. Gross,et al.  Chromatin , 2020, Definitions.

[2]  I. Goodhead,et al.  Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes , 2014, Nature Communications.

[3]  Zhonghan Li,et al.  The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL , 2013, Proceedings of the National Academy of Sciences.

[4]  Monika S. Kowalczyk,et al.  Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs , 2013, Genome Biology.

[5]  Daniel R. Caffrey,et al.  A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes , 2013, Science.

[6]  J. Stender,et al.  Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. , 2013, Molecular cell.

[7]  Howard Y. Chang,et al.  A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics , 2013, eLife.

[8]  D. Bartel,et al.  lincRNAs: Genomics, Evolution, and Mechanisms , 2013, Cell.

[9]  Caleb Webber,et al.  GAT: a simulation framework for testing the association of genomic intervals , 2013, Bioinform..

[10]  C. Glass,et al.  Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription , 2013, Nature.

[11]  C. Glass,et al.  Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation , 2013, Nature.

[12]  R. Elkon,et al.  eRNAs are required for p53-dependent enhancer activity and gene transcription. , 2013, Molecular cell.

[13]  D. Koller,et al.  Conservation and divergence in the transcriptional programs of the human and mouse immune systems , 2013, Proceedings of the National Academy of Sciences.

[14]  G. Natoli,et al.  Noncoding transcription at enhancers: general principles and functional models. , 2012, Annual review of genetics.

[15]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[16]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[17]  Jos W. M. van der Meer,et al.  Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases , 2012, Nature Reviews Drug Discovery.

[18]  Chris P. Ponting,et al.  Rapid Turnover of Long Noncoding RNAs and the Evolution of Gene Expression , 2012, PLoS genetics.

[19]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[20]  J. Rinn,et al.  Modular regulatory principles of large non-coding RNAs , 2012, Nature.

[21]  Michael F. Melgar,et al.  Discovery of active enhancers through bidirectional expression of short transcripts , 2011, Genome Biology.

[22]  Lana X. Garmire,et al.  A Global Clustering Algorithm to Identify Long Intergenic Non-Coding RNA - with Applications in Mouse Macrophages , 2011, PloS one.

[23]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[24]  T. Lane,et al.  The Emerging Role of Interleukin-1β in Autoinflammatory Diseases , 2011, Current allergy and asthma reports.

[25]  L. O’Neill,et al.  MicroRNAs: the fine-tuners of Toll-like receptor signalling , 2011, Nature Reviews Immunology.

[26]  J. Rinn,et al.  A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response , 2010, Cell.

[27]  B. Ren,et al.  Transcription: Enhancers make non-coding RNA , 2010, Nature.

[28]  F. Döring,et al.  Identification of LPS‐inducible genes downregulated by ubiquinone in human THP‐1 monocytes , 2010, BioFactors.

[29]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[30]  J. Ragoussis,et al.  A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers , 2010, PLoS biology.

[31]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[32]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[33]  Ryan M. O’Connell,et al.  Physiological and pathological roles for microRNAs in the immune system , 2010, Nature Reviews Immunology.

[34]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[35]  L. Donnelly,et al.  Effects of formoterol and salmeterol on cytokine release from monocyte-derived macrophages , 2009, European Respiratory Journal.

[36]  M. Lindsay,et al.  microRNAs and the immune response. , 2008, Trends in immunology.

[37]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[38]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[39]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[40]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[41]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[42]  Anthony P. Fejes,et al.  Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. , 2008, Genome research.

[43]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[44]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[45]  J. Mattick,et al.  Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. , 2005, Genome research.

[46]  James F. Callahan,et al.  Attenuation of Murine Collagen-Induced Arthritis by a Novel, Potent, Selective Small Molecule Inhibitor of IκB Kinase 2, TPCA-1 (2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), Occurs via Reduction of Proinflammatory Cytokines and Antigen-Induced T Cell Proliferation , 2005, Journal of Pharmacology and Experimental Therapeutics.

[47]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Matsushima,et al.  Lipopolysaccharide-inducible gene expression profile in human monocytes. , 2003, Scandinavian journal of infectious diseases.

[49]  K. Matsushima,et al.  Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. , 2000, Blood.