Nonlinear time-domain analysis of injection-locked microwave MESFET oscillators

In this paper, injection-locked MESFET oscillators are analyzed using several numerical models. The injection-locking behavior of the van der Pol equation and of a more complex representation using the Curtice-Cubic MESFET model are investigated. Analysis and experimental results are compared for an NE71083 transistor oscillator operating at 0.5 GHz. The deficiencies of using a van der Pol oscillator model are pointed out. Time-domain results from the complex model exhibiting multicycle and apparently chaotic behaviors are also examined, and point to problems with common nonlinear simulation techniques for these circuits.

[1]  W. Curtice,et al.  A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers , 1985 .

[2]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[3]  R.C. Compton,et al.  High-efficiency FET/microstrip-patch oscillators , 1994, IEEE Antennas and Propagation Magazine.

[4]  P. M. Haskins,et al.  Microstrip active path array with beam scanning , 1992 .

[5]  Robert A. York,et al.  Oscillator array dynamics with broadband N-port coupling networks , 1994 .

[6]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[7]  Tatsuo Itoh,et al.  A periodic spatial power combining MESFET oscillator , 1992 .

[8]  Tah-Hsiung Chu,et al.  Analysis of MESFET injection-locked oscillators in fundamental mode of operation , 1994 .

[9]  B. Huberman,et al.  Chaotic states and routes to chaos in the forced pendulum , 1982 .

[10]  R. Devaney,et al.  Chaos and Fractals: The Mathematics Behind the Computer Graphics , 1989 .

[11]  Gabriel M. Rebeiz,et al.  20 GHz power combining slot-oscillator array , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[12]  Z.B. Popovic,et al.  A 100-transistor quadruple grid oscillator , 1994, IEEE Microwave and Guided Wave Letters.

[13]  B. van der Pol,et al.  The Nonlinear Theory of Electric Oscillations , 1934, Proceedings of the Institute of Radio Engineers.

[14]  Zoya Popovic,et al.  Cascaded active and passive quasi-optical grids , 1995 .

[15]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[16]  B. A. Huberman,et al.  Power spectra of strange attractors , 1981 .

[17]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[18]  Robert M. Weikle,et al.  Quasi-optical power-combining arrays , 1990, IEEE International Digest on Microwave Symposium.

[19]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[20]  P. Liao,et al.  A six-element beam-scanning array , 1994, IEEE Microwave and Guided Wave Letters.

[21]  B. V. D. Pol The Nonlinear Theory of Electric Oscillations , 1934 .

[22]  Robert A. York,et al.  Nonlinear analysis of phase relationships in quasi-optical oscillator arrays , 1993 .