Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses

[1]  Bulent Tiryaki,et al.  Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees , 2008 .

[2]  A. E. Tercan,et al.  Spatial estimation of some mechanical properties of rocks by fuzzy modelling , 2007 .

[3]  Marcus Gallagher Visualization of Learning in Neural Networks Using Principal Component Analysis , 2007 .

[4]  Candan Gokceoglu,et al.  Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation , 2006 .

[5]  E. Hoek,et al.  Empirical estimation of rock mass modulus , 2006 .

[6]  Daniel T. Larose,et al.  Data mining methods and models , 2006 .

[7]  Mahmoud A. Abo-Sinna,et al.  A combined genetic algorithm-fuzzy logic controller (GA-FLC) in nonlinear programming , 2005, Appl. Math. Comput..

[8]  H. Wang,et al.  Slope stability evaluation using Back Propagation Neural Networks , 2005 .

[9]  C. Gokceoğlu,et al.  Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate , 2004 .

[10]  Candan Gokceoglu,et al.  A neuro-fuzzy model for modulus of deformation of jointed rock masses , 2004 .

[11]  G. Ma,et al.  Identification of dynamic rock properties using a genetic algorithm , 2004 .

[12]  G. Ma,et al.  SINOROCK2004 Paper 2B 05Identification of dynamic rock properties using a genetic algorithm , 2004 .

[13]  Candan Gokceoglu,et al.  A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock , 2004, Eng. Appl. Artif. Intell..

[14]  P. K. Kaiser,et al.  Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system , 2004 .

[15]  C. Gokceoğlu,et al.  Estimating the deformation modulus of rock masses: a comparative study , 2003 .

[16]  Mary M. Poulton,et al.  Neural networks as an intelligence amplification tool: A review of applications , 2002 .

[17]  Vili Podgorelec,et al.  Evolutionary induced decision trees for dangerous software modules prediction , 2002, Inf. Process. Lett..

[18]  Taşkin Kavzoĝlu,et al.  An investigation of the design and use of feed-forward artificial neural networks in the classification of remotely sensed images , 2001 .

[19]  T. N. Singh,et al.  Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks , 2001 .

[20]  Michael Negnevitsky,et al.  Artificial Intelligence: A Guide to Intelligent Systems , 2001 .

[21]  I A Basheer,et al.  Artificial neural networks: fundamentals, computing, design, and application. , 2000, Journal of microbiological methods.

[22]  Imad A. Basheer,et al.  Selection of Methodology for Neural Network Modeling of Constitutive Hystereses Behavior of Soils , 2000 .

[23]  Akbar A. Javadi,et al.  IDENTIFICATION OF PARAMETERS FOR AIR PERMEABILITY OF SHOTCRETE TUNNEL LINING USING A GENETIC ALGORITHM , 1999 .

[24]  Robert Babuška,et al.  Fuzzy model for the prediction of unconfined compressive strength of rock samples , 1999 .

[25]  Yi Huang,et al.  The introduction of neural network system and its applications in rock engineering , 1998 .

[26]  Josef Kittler,et al.  Choosing an Optimal Neural Network Size to aid a Search Through a Large Image Database , 1998, BMVC.

[27]  I. Kanellopoulos,et al.  Strategies and best practice for neural network image classification , 1997 .

[28]  Carl G. Looney,et al.  Pattern recognition using neural networks: theory and algorithms for engineers and scientists , 1997 .

[29]  S. Al-Alawi,et al.  Prediction of fracture toughness using artificial neural networks (ANNs) , 1997 .

[30]  M. Fischer,et al.  Spectral Pattern Recognition by a Two-Layer Perceptron: Effects of Training Set Size , 1997 .

[31]  Carl G. Looney,et al.  Advances in Feedforward Neural Networks: Demystifying Knowledge Acquiring Black Boxes , 1996, IEEE Trans. Knowl. Data Eng..

[32]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[33]  Kevin Swingler,et al.  Applying neural networks - a practical guide , 1996 .

[34]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[35]  Markus A. Reuter,et al.  The application of neural nets in the metallurgical industry , 1994 .

[36]  LiMin Fu,et al.  Neural networks in computer intelligence , 1994 .

[37]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[38]  Barry J. Wythoff,et al.  Backpropagation neural networks , 1993 .

[39]  Wilfrid S. Kendall,et al.  Networks and Chaos - Statistical and Probabilistic Aspects , 1993 .

[40]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .

[41]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[42]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[43]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[44]  W. T. Illingworth,et al.  Practical guide to neural nets , 1991 .

[45]  D. R. Hush,et al.  Classification with neural networks: a performance analysis , 1989, IEEE 1989 International Conference on Systems Engineering.

[46]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[47]  I. Jolliffe Principal Component Analysis , 2005 .

[48]  E. T. Brown Rock characterization, testing & monitoring: ISRM suggested methods , 1981 .