Anisotropic Young-Laplace-equation provides insight into tissue growth

Anisotropic Young-Laplace-equation provides insight into tissue growth. Peter Fratzl1, F. Dieter Fischer2, Gerald A. Zickler2, John W.C. Dunlop3 1Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam Science Park, 14476 Potsdam-Golm, Germany 2Montanuniversität Leoben, Institute of Mechanics, 8700 Leoben, Austria 3Morphophysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, 5020 Salzburg, Austria

[1]  Amir A Zadpoor,et al.  Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. , 2019, Biomaterials.

[2]  J. Dunlop,et al.  The Emergence of Complexity from a Simple Model for Tissue Growth , 2019, Journal of Statistical Physics.

[3]  Cécile M. Bidan,et al.  Surface tension determines tissue shape and growth kinetics , 2018, Science Advances.

[4]  Cécile M. Bidan,et al.  Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts , 2018, Science Advances.

[5]  Daniel Riveline,et al.  ‘The Forms of Tissues, or Cell-aggregates’: D'Arcy Thompson's influence and its limits , 2017, Development.

[6]  A. Goriely The Mathematics and Mechanics of Biological Growth , 2017 .

[7]  T. J. McCarthy,et al.  Capillary-bridge–derived particles with negative Gaussian curvature , 2015, Proceedings of the National Academy of Sciences.

[8]  Cécile M. Bidan,et al.  Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. , 2013, Acta biomaterialia.

[9]  Peter Fratzl,et al.  The effect of geometry on three-dimensional tissue growth , 2008, Journal of The Royal Society Interface.

[10]  D. Vollath,et al.  On the role of surface energy and surface stress in phase-transforming nanoparticles , 2008 .

[11]  L. Mahadevan,et al.  Kinks, rings, and rackets in filamentous structures , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Alejandro D. Rey,et al.  Young-Laplace equation for liquid crystal interfaces , 2000 .

[13]  Philip Kollmannsberger,et al.  Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds , 2013, Advanced healthcare materials.

[14]  Maan H. Jawad,et al.  Theory and design of plate and shell structures , 1994 .

[15]  Metals Minerals,et al.  Metallurgical and materials transactions. A, Physical metallurgy and materials science , 1994 .

[16]  F. Ziegler,et al.  Technische Mechanik der festen und flüssigen Körper , 1985 .

[17]  D. Dyson,et al.  Stability of fluid interfaces of revolution between equal solid circular plates , 1971 .

[18]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[19]  Ch. Delaunay,et al.  Sur la surface de révolution dont la courbure moyenne est constante. , 1841 .

[20]  Thomas Young,et al.  An Essay on the Cohesion of Fluids , 1800 .