Metal matrix composite fuel for space radioisotope energy sources
暂无分享,去创建一个
Nigel P. Bannister | Hr Williams | Richard M. Ambrosi | Keith Stephenson | Michael J. Reece | N. Bannister | H. Ning | M. Reece | R. Ambrosi | Huanpo Ning | K. Stephenson | H. Williams | R. M. Ambrosi
[1] W. P. Carroll,et al. Review of recent advances of radioisotope power systems , 2008 .
[2] Antonio Mario Locci,et al. Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .
[3] O. Sbaizero,et al. Fracture energy and R-curve behavior of Al2O3/Mo composites , 1998 .
[4] K. Konno. Liquidus Temperature of Irradiated Mixed Oxide Fuels for Fast Reactors , 2002 .
[5] J. B. Ainscough,et al. The room temperature fracture strength of sintered UO2 rings containing deliberately introduced impurities , 1976 .
[6] E. Schweda,et al. Structural Features of Rare Earth Oxides , 2004 .
[7] H. Yan,et al. Piezoelectric Strontium Niobate and Calcium Niobate Ceramics with Super‐High Curie Points , 2010 .
[8] Tibor S. Balint,et al. RPS strategies to enable NASA's next decade robotic Mars missions , 2007 .
[9] Y. Katoh,et al. Concentric ring on ring test for unirradiated and irradiated miniature SiC specimens , 2011 .
[10] K. C. Radford. Effect of fabrication parameters and microstructure on the mechanical strength of UO2 fuel pellets , 1979 .
[11] M. Verwerft,et al. Predicting thermo-mechanical behaviour of high minor actinide content composite oxide fuel in a dedicated transmutation facility , 2011 .
[12] M. D. Burdick,et al. Flexural Strength of Specimens Prepared from Several Uranium Dioxide Powders; Its Dependence on Porosity and Grain Size and the Influence of Additions of Titania , 1960 .
[13] H. Matzke,et al. Materials research on inert matrices: a screening study , 1999 .
[14] Yu Zhou,et al. Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering , 2004 .
[15] Masayoshi Uno,et al. Effect of Nd and Pr addition on the thermal and mechanical properties of (U, Ce)O2 , 2009 .
[16] Werner Maschek,et al. Accelerator driven systems for transmutation: Fuel development, design and safety , 2008 .
[17] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[18] J. T. A. Roberts,et al. Deformation of UO2 at High Temperatures , 1971 .
[19] Werner Maschek,et al. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system , 2011 .
[20] Nigel P. Bannister,et al. A conceptual spacecraft radioisotope thermoelectric and heating unit (RTHU) , 2012 .
[21] T. Peijs,et al. The sintering and grain growth behaviour of ceramic–carbon nanotube nanocomposites , 2010 .
[22] F. Cardarelli. Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .
[23] Robert Charles O’Brien. Radioisotope and Nuclear Technologies for Space Exploration , 2010 .
[24] D. Perera,et al. Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing , 1998 .
[25] David W. Richerson,et al. Modern ceramic engineering: Properties, processing and use in design , 2018 .
[26] A. G. Evans,et al. The strength and fracture of stoichiometric polycrystalline UO2 , 1969 .
[27] Y. Kuroda,et al. Adsorption of Water on Nd2O3: Protecting a Nd2O3 Sample from Hydration through Surface Fluoridation , 2000 .
[28] J. Gong,et al. Weibull modulus of fracture strength of toughened ceramics subjected to small-scale contacts , 2001 .
[29] R. Torrecillas,et al. Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites , 2008 .
[30] K. Idemitsu,et al. Thermal conductivities of americium dioxide and sesquioxide by molecular dynamics simulations , 2009 .
[31] F. Oliveira,et al. High strength TiC matrix Fe28Al toughened composites prepared by spontaneous melt infiltration , 2006 .
[32] William Powrie,et al. An Assessment of Transition Zone Performance , 2011 .
[33] Nigel P. Bannister,et al. Spark Plasma Sintering of simulated radioisotope materials within tungsten cermets , 2009 .
[34] David Buden,et al. Space nuclear power , 1985 .
[35] Leopold Summerer,et al. Nuclear Power Sources: A Key Enabling Technology for Planetary Exploration , 2011 .