Metal matrix composite fuel for space radioisotope energy sources

Abstract Radioisotope fuels produce heat that can be used for spacecraft thermal control or converted to electricity. They must retain integrity in the event of destruction or atmospheric entry of the parent spacecraft. Addition of a metal matrix to the actinide oxide could yield a more robust fuel form. Neodymium (III) oxide (Nd 2 O 3 ) – niobium metal matrix composites were produced using Spark Plasma Sintering; Nd 2 O 3 is a non-radioactive surrogate for americium (III) oxide (Am 2 O 3 ). Two compositions, 70 and 50 wt% Nd 2 O 3 , were mechanically tested under equibiaxial (ring-on-ring) flexure according to ASTM C1499. The addition of the niobium matrix increased the mean flexural strength by a factor of about 2 compared to typical ceramic nuclear fuels, and significantly increased the Weibull modulus to over 20. These improved mechanical properties could result in reduced fuel dispersion in severe accidents and improved safety of space radioisotope power systems.

[1]  W. P. Carroll,et al.  Review of recent advances of radioisotope power systems , 2008 .

[2]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[3]  O. Sbaizero,et al.  Fracture energy and R-curve behavior of Al2O3/Mo composites , 1998 .

[4]  K. Konno Liquidus Temperature of Irradiated Mixed Oxide Fuels for Fast Reactors , 2002 .

[5]  J. B. Ainscough,et al.  The room temperature fracture strength of sintered UO2 rings containing deliberately introduced impurities , 1976 .

[6]  E. Schweda,et al.  Structural Features of Rare Earth Oxides , 2004 .

[7]  H. Yan,et al.  Piezoelectric Strontium Niobate and Calcium Niobate Ceramics with Super‐High Curie Points , 2010 .

[8]  Tibor S. Balint,et al.  RPS strategies to enable NASA's next decade robotic Mars missions , 2007 .

[9]  Y. Katoh,et al.  Concentric ring on ring test for unirradiated and irradiated miniature SiC specimens , 2011 .

[10]  K. C. Radford Effect of fabrication parameters and microstructure on the mechanical strength of UO2 fuel pellets , 1979 .

[11]  M. Verwerft,et al.  Predicting thermo-mechanical behaviour of high minor actinide content composite oxide fuel in a dedicated transmutation facility , 2011 .

[12]  M. D. Burdick,et al.  Flexural Strength of Specimens Prepared from Several Uranium Dioxide Powders; Its Dependence on Porosity and Grain Size and the Influence of Additions of Titania , 1960 .

[13]  H. Matzke,et al.  Materials research on inert matrices: a screening study , 1999 .

[14]  Yu Zhou,et al.  Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering , 2004 .

[15]  Masayoshi Uno,et al.  Effect of Nd and Pr addition on the thermal and mechanical properties of (U, Ce)O2 , 2009 .

[16]  Werner Maschek,et al.  Accelerator driven systems for transmutation: Fuel development, design and safety , 2008 .

[17]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[18]  J. T. A. Roberts,et al.  Deformation of UO2 at High Temperatures , 1971 .

[19]  Werner Maschek,et al.  Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system , 2011 .

[20]  Nigel P. Bannister,et al.  A conceptual spacecraft radioisotope thermoelectric and heating unit (RTHU) , 2012 .

[21]  T. Peijs,et al.  The sintering and grain growth behaviour of ceramic–carbon nanotube nanocomposites , 2010 .

[22]  F. Cardarelli Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .

[23]  Robert Charles O’Brien Radioisotope and Nuclear Technologies for Space Exploration , 2010 .

[24]  D. Perera,et al.  Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing , 1998 .

[25]  David W. Richerson,et al.  Modern ceramic engineering: Properties, processing and use in design , 2018 .

[26]  A. G. Evans,et al.  The strength and fracture of stoichiometric polycrystalline UO2 , 1969 .

[27]  Y. Kuroda,et al.  Adsorption of Water on Nd2O3: Protecting a Nd2O3 Sample from Hydration through Surface Fluoridation , 2000 .

[28]  J. Gong,et al.  Weibull modulus of fracture strength of toughened ceramics subjected to small-scale contacts , 2001 .

[29]  R. Torrecillas,et al.  Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites , 2008 .

[30]  K. Idemitsu,et al.  Thermal conductivities of americium dioxide and sesquioxide by molecular dynamics simulations , 2009 .

[31]  F. Oliveira,et al.  High strength TiC matrix Fe28Al toughened composites prepared by spontaneous melt infiltration , 2006 .

[32]  William Powrie,et al.  An Assessment of Transition Zone Performance , 2011 .

[33]  Nigel P. Bannister,et al.  Spark Plasma Sintering of simulated radioisotope materials within tungsten cermets , 2009 .

[34]  David Buden,et al.  Space nuclear power , 1985 .

[35]  Leopold Summerer,et al.  Nuclear Power Sources: A Key Enabling Technology for Planetary Exploration , 2011 .