Universal Near Minimaxity of Wavelet Shrinkage

We discuss a method for curve estimation based on n noisy data; one translates the empirical wavelet coefficients towards the origin by an amount \( \sqrt {{2\log \left( n \right)}} \cdot \sigma /\sqrt {n}\) The method is nearly minimax for a wide variety of loss functions-e.g. pointwise error, global error measured in LP norms, pointwise and global error in estimation of derivatives—and for a wide range of smoothness classes, including standard Holder classes, Sobolev classes, and Bounded Variation. This is a broader near-optimality than anything previously proposed in the minimax literature. The theory underlying the method exploits a correspondence between statistical questions and questions of optimal recovery and information-based complexity. This paper contains a detailed proof of the result announced in Donoho, Johnstone, Kerkyacharian & Picard (1995).

[1]  J. Peetre New thoughts on Besov spaces , 1976 .

[2]  Charles A. Micchelli,et al.  A Survey of Optimal Recovery , 1977 .

[3]  J. Bretagnolle,et al.  Estimation des densités: risque minimax , 1978 .

[4]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[5]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[6]  I. A. Ibragimov,et al.  Bounds for the Risks of Non-Parametric Regression Estimates , 1982 .

[7]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[8]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[9]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[10]  H. Woxniakowski Information-Based Complexity , 1988 .

[11]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[13]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[14]  Iain M. Johnstone,et al.  Estimation d'une densité de probabilité par méthode d'ondelettes , 1992 .

[15]  A. Samarov Lower bound for the integral risk of density function estimates , 1992 .

[16]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[17]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[18]  D. Donoho Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery , 1994 .

[19]  I. Johnstone Minimax Bayes, Asymptotic Minimax and Sparse Wavelet Priors , 1994 .

[20]  D. Donoho Statistical Estimation and Optimal Recovery , 1994 .

[21]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[22]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[23]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .