An Exact Linear Lifting-Surface Theory for a Marine Propeller in a Nonuniform Flow Field

Abstract : The mathematical model used in previous Davidson Laboratory adaptations of linearized unsteady lifting surface theory to marine propellers has been revised by removing the so-called 'staircase' approximation of the blade wake and replacing it by an 'exact' helicoidal blade wake. A new numerical procedure and program based on the present model has been developed to evaluate the steady and unsteady blade loading distributions, which are used to determine the bearing forces and moments. Systematic calculations of these forces and moments for a series of propellers show better agreement on the whole with experimental measurements than did the earlier calculations for the same series. In addition, the chordwise loading distributions are much smoother than obtained previously. However, the quantitative improvement must be weighed against the considerable increase in computer time over the old method.