Strong many-body effects in silicene-based structures

[1]  Wei Wei,et al.  Electronic and optical properties of fluorinated graphene: A many-body perturbation theory study , 2013 .

[2]  B. Partoens,et al.  Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties , 2013, 1302.3746.

[3]  N. Takagi,et al.  Substrate-induced symmetry breaking in silicene. , 2013, Physical review letters.

[4]  T. Jacob,et al.  Strong excitonic effects in the optical properties of graphitic carbon nitrideg-C3N4from first principles , 2013 .

[5]  F. Peeters,et al.  Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene , 2013, 1302.1332.

[6]  Jijun Zhao,et al.  Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface , 2012, Scientific Reports.

[7]  E. Nicol,et al.  Optical signatures of the tunable band gap and valley-spin coupling in silicene , 2012, 1211.1336.

[8]  T. Jacob,et al.  Strong charge-transfer excitonic effects in C 4 H-type hydrogenated graphene , 2012 .

[9]  M. Aono,et al.  Multilayer silicene nanoribbons. , 2012, Nano letters.

[10]  Daniele Chiappe,et al.  Local Electronic Properties of Corrugated Silicene Phases , 2012, Advanced materials.

[11]  Friedhelm Bechstedt,et al.  Infrared absorbance of silicene and germanene , 2012 .

[12]  M. Ezawa Spin-valley optical selection rule and strong circular dichroism in silicene , 2012, 1206.5378.

[13]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[14]  Friedhelm Bechstedt,et al.  Strong excitons in novel two-dimensional crystals: Silicane and germanane , 2012 .

[15]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[16]  Cheng-Cheng Liu,et al.  Evidence for Dirac fermions in a honeycomb lattice based on silicon. , 2012, Physical review letters.

[17]  J. Grossman,et al.  Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride. , 2012, Physical review letters.

[18]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[19]  Motohiko Ezawa,et al.  Valley-polarized metals and quantum anomalous Hall effect in silicene. , 2012, Physical review letters.

[20]  Yanli Wang,et al.  Electronic structures of silicene fluoride and hydride , 2012 .

[21]  Shishen Yan,et al.  First-Principles Study of Ferromagnetism in Two-Dimensional Silicene with Hydrogenation , 2012 .

[22]  K. Kugel,et al.  A stable "flat" form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? , 2012, Nano letters.

[23]  M. Ezawa A topological insulator and helical zero mode in silicene under an inhomogeneous electric field , 2012, 1201.3687.

[24]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[25]  Q. Jiang,et al.  Density functional theory calculations for two-dimensional silicene with halogen functionalization. , 2012, Physical chemistry chemical physics : PCCP.

[26]  V. Fal’ko,et al.  Electrically tunable band gap in silicene , 2011, 1112.4792.

[27]  Li Yang Excitonic effects on optical absorption spectra of doped graphene. , 2011, Nano letters.

[28]  Cheng-Cheng Liu,et al.  Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin , 2011, 1108.2933.

[29]  Joelson Cott Garcia,et al.  Group IV graphene- and graphane-like nanosheets , 2011, 1204.2875.

[30]  K. Sankaran,et al.  Electronic properties of hydrogenated silicene and germanene , 2011 .

[31]  D. Varsano,et al.  Quantum-dot states and optical excitations in edge-modulated graphene nanoribbons , 2011, 1104.3519.

[32]  Cheng-Cheng Liu,et al.  Quantum spin Hall effect in silicene and two-dimensional germanium. , 2011, Physical review letters.

[33]  Li Yang Excitons in intrinsic and bilayer graphene , 2011 .

[34]  Xiao-Qian Wang,et al.  Stacking-dependent optical spectra and many-electron effects in bilayer graphene , 2011 .

[35]  J. Shan,et al.  Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. , 2010, Physical review letters.

[36]  Hanna Enriquez,et al.  Epitaxial growth of a silicene sheet , 2010, 1204.0523.

[37]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 2010 .

[38]  Andre Stesmans,et al.  Can silicon behave like graphene? A first-principles study , 2010 .

[39]  A. Farajian,et al.  Hydrogen compounds of group-IV nanosheets , 2010, 1007.2110.

[40]  V. Kravets,et al.  Fluorographene: a two-dimensional counterpart of Teflon. , 2010, Small.

[41]  Abdelkader Kara,et al.  Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene , 2010 .

[42]  Á. Rubio,et al.  Many-body effects in the excitation spectrum of a defect in SiC. , 2010, Physical review letters.

[43]  Á. Rubio,et al.  Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane. , 2010, Physical review letters.

[44]  M. Côté,et al.  Ab initio high-energy excitonic effects in graphite and graphene , 2009, 0909.1682.

[45]  J. Ni,et al.  Electronic structures of silicon nanoribbons , 2009 .

[46]  E. Aktürk,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[47]  Mehmet Topsakal,et al.  Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study , 2009, 0907.0501.

[48]  S. Louie,et al.  Excitonic effects on the optical response of graphene and bilayer graphene. , 2009, Physical review letters.

[49]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[50]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[51]  S. Louie,et al.  Magnetic edge-state excitons in zigzag graphene nanoribbons. , 2008, Physical review letters.

[52]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[53]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[54]  A. Marini,et al.  Exciton-plasmon States in nanoscale materials: breakdown of the Tamm-Dancoff approximation. , 2008, Nano letters.

[55]  L. Reining,et al.  Ab initio GW many-body effects in graphene. , 2008, Physical review letters.

[56]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[57]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[58]  S. Louie,et al.  Excitonic effects in the optical spectra of graphene nanoribbons. , 2007, Nano letters.

[59]  B. Wees,et al.  Electronic spin transport and spin precession in single graphene layers at room temperature , 2007, Nature.

[60]  A. Marini,et al.  Optical properties of graphene nanoribbons: The role of many-body effects , 2007, 0706.0916.

[61]  A. Marini,et al.  From Si nanowires to porous silicon: the role of excitonic effects. , 2007, Physical review letters.

[62]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical review letters.

[63]  M. L. Tiago,et al.  Excitonic effects and optical properties of passivated CdSe clusters. , 2006, Physical review letters.

[64]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[65]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[66]  L. Wirtz,et al.  Excitons in boron nitride nanotubes: dimensionality effects. , 2005, Physical review letters.

[67]  A. Marini,et al.  Dynamical excitonic effects in metals and semiconductors. , 2003, Physical review letters.

[68]  Angel Rubio,et al.  Optical and loss spectra of carbon nanotubes: depolarization effects and intertube interactions. , 2003, Physical review letters.

[69]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[70]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[71]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[72]  Steven G. Louie,et al.  Excitons and Optical Spectrum of the Si ( 111 ) − ( 2 × 1 ) Surface , 1999 .

[73]  Steven G. Louie,et al.  Optical Excitations in Conjugated Polymers , 1999 .

[74]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[75]  Steven G. Louie,et al.  Excitonic Effects and the Optical Absorption Spectrum of Hydrogenated Si Clusters , 1998 .

[76]  Werner Hanke,et al.  Many-particle effects in the optical spectrum of a semiconductor , 1980 .

[77]  W. Hanke,et al.  Many-Particle Effects in the Optical Excitations of a Semiconductor , 1979 .

[78]  L. J. Sham,et al.  Many-Particle Derivation of the Effective-Mass Equation for the Wannier Exciton , 1966 .

[79]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[80]  Cheol-Hwan Park,et al.  Self-interaction in Green ’ s-function theory of the hydrogen atom , 2007 .