Sensitivity of snow avalanche simulations to digital elevation model quality and resolution

Abstract Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Vallée de la Sionne (winter 2005/06).We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ∼25m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations.

[1]  Benjamin Zweifel,et al.  New trends of recreational avalanche accidents in Switzerland , 2008 .

[2]  Marc Christen,et al.  RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain , 2010 .

[3]  W. Ammann,et al.  A new Swiss test-site for avalanche experiments in the Vallée de la Sionne/Valais , 1999 .

[4]  Betty Sovilla,et al.  Measured shear rates in large dry and wet snow avalanches , 2009, Journal of Glaciology.

[5]  B. Salm,et al.  Flow, flow transition and runout distances of flowing avalanches , 1993, Annals of Glaciology.

[6]  P. Bartelt,et al.  Frictional relaxation in avalanches , 2010, Annals of Glaciology.

[7]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Brian W. McArdell,et al.  Granulometric investigations of snow avalanches , 2009, Journal of Glaciology.

[9]  Marc Christen,et al.  Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results , 2010, Annals of Glaciology.

[10]  Betty Sovilla,et al.  Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site , 2008 .

[11]  Barnali M. Dixon,et al.  Resample or not?! Effects of resolution of DEMs in watershed modeling , 2009 .

[12]  Thomas A. Hennig,et al.  The Shuttle Radar Topography Mission , 2001, Digital Earth Moving.

[13]  Maria Petrou,et al.  Error statistics for slope and aspect when derived from interpolated data , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  P. Bartelt,et al.  Fluctuation-dissipation relations for granular snow avalanches , 2006 .

[15]  Peter Sampl,et al.  Avalanche simulation with SAMOS , 2004, Annals of Glaciology.

[16]  P. Bartelt,et al.  Production and decay of random kinetic energy in granular snow avalanches , 2009, Journal of Glaciology.

[17]  Markus Christen,et al.  Automated detection and mapping of avalanche deposits using airborne optical remote sensing data , 2009 .

[18]  P. Bartelt,et al.  Starving avalanches: Frictional mechanisms at the tails of finite‐sized mass movements , 2007 .

[19]  Kolumban Hutter,et al.  Avalanche dynamics: Dynamics of rapid flows of dense granular avalanches , 2016 .

[20]  P. Bartelt,et al.  Measurements of dense snow avalanche basal shear to normal stress ratios (S/N) , 2007 .

[21]  U. Gruber,et al.  Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS , 2007, Environ. Model. Softw..

[22]  Christopher J. Keylock,et al.  Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites , 2000 .

[23]  Stefan Margreth,et al.  Hazard scenarios for avalanche actions on bridges , 2004, Annals of Glaciology.

[24]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[25]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..