Chapter 10 A Hilbert Space Approach to Variance Reduction

In this chapter we explain variance reduction techniques from the Hilbert space standpoint, in the terminating simulation context. We use projection ideas to explain how variance is reduced, and to link difierent variance reduction techniques. Our focus is on the methods of control variates, conditional Monte Carlo, weighted Monte Carlo, stratiflcation, and Latin hypercube sampling.

[1]  Paul Glasserman,et al.  Large Sample Properties of Weighted Monte Carlo Estimators , 2005, Oper. Res..

[2]  Peter W. Glynn,et al.  Approximating Martingales for Variance Reduction in Markov Process Simulation , 2002, Math. Oper. Res..

[3]  Ward Whitt,et al.  Indirect Estimation Via L = λW , 1989, Oper. Res..

[4]  James R. Wilson,et al.  Integrated Variance Reduction Strategies for Simulation , 1996, Oper. Res..

[5]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[6]  Reuven Y. Rubinstein,et al.  Efficiency of Multivariate Control Variates in Monte Carlo Simulation , 1985, Oper. Res..

[7]  Robert Buff,et al.  WEIGHTED MONTE CARLO: A NEW TECHNIQUE FOR CALIBRATING ASSET-PRICING MODELS , 2001 .

[8]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[9]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[10]  Wei-Liem Loh On Latin hypercube sampling , 1996 .

[11]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[12]  Bruce W. Schmeiser,et al.  Biased control-variate estimation , 2001 .

[13]  Stephen S. Lavenberg,et al.  Statistical Results on Control Variables with Application to Queueing Network Simulation , 1982, Oper. Res..

[14]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[15]  P. Glynn,et al.  Some New Perspectives on the Method of Control Variates , 2002 .

[16]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[17]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[18]  James R. Wilson,et al.  The efficiency of control variates in multiresponse simulation , 1986 .

[19]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[20]  B. Nelson,et al.  Control Variates for Probability and Quantile Estimation , 1998 .

[21]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[22]  R. Durrett Probability: Theory and Examples , 1993 .

[23]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[24]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[25]  M. Avellaneda,et al.  CONQUERING THE GREEKS IN MONTE CARLO: EFFICIENT CALCULATION OF THE MARKET SENSITIVITIES AND HEDGE-RATIOS OF FINANCIAL ASSETS BY DIRECT NUMERICAL SIMULATION , 2002 .

[26]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[27]  Peter Mathé,et al.  Hilbert space analysis of Latin Hypercube Sampling , 2000 .

[28]  Barry L. Nelson,et al.  Control Variate Remedies , 1990, Oper. Res..

[29]  Stephen S. Lavenberg,et al.  A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations , 1981 .

[30]  Robert J. Zimmer,et al.  Essential Results Of Functional Analysis , 1990 .

[31]  Peter W. Glynn,et al.  Constrained Monte Carlo and the method of control variates , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[32]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[33]  P. Glasserman,et al.  Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options , 1999 .

[34]  James R. Wilson Variance Reduction Techniques for Digital Simulation , 1984 .

[35]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.