MADM-A New Multicomponent Aerosol Dynamics Model

A Multicomponent Aerosol Dynamics Model (MADM) capable of solving the condensation/evaporation equation of atmospheric aerosols is presented. Condensable species may be organic and/or inorganic. For the inorganic constituents the equilibrium model ISORROPIA is used to predict the physical state of the particle, i.e., whether the aerosol is liquid or solid. The mass transfer equations for the fluxes for solid atmospheric particles are developed. MADM is able to simulate aerosol deliquescence, crystallization, solid to solid phase transitions, and acidity transitions. Aerosols of different sizes can be in different physical states (solid, liquid, or partially solid and partially liquid). Novel constraints on the electroneutrality of the species flux between the gas and aerosol phases are presented for both liquid and solid aerosols. These constraints aid in the stability of the algorithm, yet still allow changes in aerosol acidity. As an example, MADM is used to predict the dynamic response of marine aerosol entering an urban area.

[1]  S. Pandis,et al.  A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models , 2000 .

[2]  S. Pandis,et al.  Evaluation of secondary organic aerosol formation in winter , 1999 .

[3]  A. Wexler,et al.  Modeling urban and regional aerosols - Condensation and evaporation near acid neutrality , 1998 .

[4]  A. Wexler,et al.  Modeling urban and regional aerosols near acid neutrality—application to the 24–25 June scaqs episode , 1998 .

[5]  J. Seinfeld,et al.  Size‐resolved and chemically resolved model of atmospheric aerosol dynamics , 1998 .

[6]  J. Seinfeld,et al.  Mathematical model for gas-particle partitioning of secondary organic aerosols , 1997 .

[7]  Naresh Kumar,et al.  Modelling urban and regional aerosols—II. Application to California's South Coast Air Basin , 1997 .

[8]  M. Jacobson Numerical Techniques to Solve Condensational and Dissolutional Growth Equations When Growth is Coupled to Reversible Reactions , 1997 .

[9]  M. Jacobson Development and application of a new air pollution modeling system—II. Aerosol module structure and design , 1997 .

[10]  J. Seinfeld,et al.  Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species , 1996 .

[11]  R. Turco,et al.  Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols , 1996 .

[12]  J. Seinfeld,et al.  Secondary organic aerosol formation and transport — II. Predicting the ambient secondary organic aerosol size distribution☆ , 1993 .

[13]  J. Seinfeld,et al.  Atmospheric gas−aerosol equilibrium. II: Analysis of common approximations and activity coefficient calculation methods , 1993 .

[14]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model , 1993 .

[15]  John H. Seinfeld,et al.  Simulation of multicomponent aerosol dynamics , 1992 .

[16]  J. Seinfeld,et al.  The distribution of ammonium salts among a size and composition dispersed aerosol , 1990 .

[17]  G. Cass,et al.  Mathematical modeling of the formation of nitrogen-containing air pollutants. 1. Evaluation of an Eulerian photochemical model. , 1988, Environmental science & technology.

[18]  J. Seinfeld,et al.  Development and evaluation of an Eulerian photochemical gas-aerosol model , 1988 .

[19]  Christian Seigneur,et al.  Mathematical modeling of the dynamics of multicomponent atmospheric aerosols , 1987 .

[20]  John H. Seinfeld,et al.  Simulation of Aerosol Size Distribution Evolution in Systems with Simultaneous Nucleation, Condensation, and Coagulation , 1985 .

[21]  B. Dahneke Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols , 1983 .

[22]  J. Seinfeld,et al.  Sectional representations for simulating aerosol dynamics , 1980 .