The advantages and limitations of trait analysis with GWAS: a review

[1]  Nicholas A. Johnson,et al.  Genetic Architecture of Skin and Eye Color in an African-European Admixed Population , 2013, PLoS genetics.

[2]  Bjarni J. Vilhjálmsson,et al.  The nature of confounding in genome-wide association studies , 2012, Nature Reviews Genetics.

[3]  Ronald M. Nelson,et al.  SELECTION ON VARIANCE‐CONTROLLING GENES: ADAPTABILITY OR STABILITY , 2012, Evolution; international journal of organic evolution.

[4]  Bjarni J. Vilhjálmsson,et al.  GWAPP: A Web Application for Genome-Wide Association Mapping in Arabidopsis[W][OA] , 2012, Plant Cell.

[5]  Eleazar Eskin,et al.  Genome-wide association studies in mice , 2012, Nature Reviews Genetics.

[6]  M. Nordborg,et al.  Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana , 2012, PLoS genetics.

[7]  Jean-Paul Bouchet,et al.  Genome-Wide Association Mapping in Tomato (Solanum lycopersicum) Is Possible Using Genome Admixture of Solanum lycopersicum var. cerasiforme , 2012, G3: Genes | Genomes | Genetics.

[8]  Bjarni J. Vilhjálmsson,et al.  A mixed-model approach for genome-wide association studies of correlated traits in structured populations , 2012, Nature Genetics.

[9]  Jonathan P. Beauchamp,et al.  The Promises and Pitfalls of Genoeconomics* , 2012, Annual review of economics.

[10]  Taesung Park,et al.  A novel method to identify high order gene-gene interactions in genome-wide association studies: Gene-based MDR , 2012, BMC Bioinformatics.

[11]  Eleazar Eskin,et al.  Improved linear mixed models for genome-wide association studies , 2012, Nature Methods.

[12]  Bjarni J. Vilhjálmsson,et al.  An efficient multi-locus mixed model approach for genome-wide association studies in structured populations , 2012, Nature Genetics.

[13]  Holger Schwender,et al.  Incorporating Genotype Uncertainties Into the Genotypic TDT for Main Effects and Gene‐Environment Interactions , 2012, Genetic epidemiology.

[14]  Julin N. Maloof,et al.  A Genome-Wide Association Study Identifies Variants Underlying the Arabidopsis thaliana Shade Avoidance Response , 2012, PLoS genetics.

[15]  Ian J. Deary,et al.  Genetic contributions to stability and change in intelligence from childhood to old age , 2012, Nature.

[16]  Greg Gibson,et al.  Rare and common variants: twenty arguments , 2012, Nature Reviews Genetics.

[17]  A. Auton,et al.  Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel , 2011, Nature Genetics.

[18]  Xiaofeng Zhu,et al.  Detecting rare variants. , 2012, Methods in molecular biology.

[19]  Qian Qian,et al.  Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm , 2011, Nature Genetics.

[20]  Lindsey J. Leach,et al.  Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars , 2012, Theoretical and Applied Genetics.

[21]  Detlef Weigel,et al.  Natural Variation in Arabidopsis: From Molecular Genetics to Ecological Genomics1[W][OA] , 2011, Plant Physiology.

[22]  Yilin Dai,et al.  Improved power by collapsing rare and common variants based on a data-adaptive forward selection strategy , 2011, BMC proceedings.

[23]  U. Peters,et al.  The use of imputed values in the meta‐analysis of genome‐wide association studies , 2011, Genetic epidemiology.

[24]  M. Nordborg,et al.  A Map of Local Adaptation in Arabidopsis thaliana , 2011, Science.

[25]  B. Hayes,et al.  Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production on BTA12. , 2011, Animal genetics.

[26]  K. Borgwardt,et al.  Whole-genome sequencing of multiple Arabidopsis thaliana populations , 2011, Nature Genetics.

[27]  Vipin T. Sreedharan,et al.  Multiple reference genomes and transcriptomes for Arabidopsis thaliana , 2011, Nature.

[28]  Jason A. Corwin,et al.  Combining Genome-Wide Association Mapping and Transcriptional Networks to Identify Novel Genes Controlling Glucosinolates in Arabidopsis thaliana , 2011, PLoS biology.

[29]  Jonathan D. G. Jones,et al.  Evidence for Network Evolution in an Arabidopsis Interactome Map , 2011, Science.

[30]  Karsten M. Borgwardt,et al.  Epistasis detection on quantitative phenotypes by exhaustive enumeration using GPUs , 2011, Bioinform..

[31]  Chris S. Haley,et al.  EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards , 2011, Bioinform..

[32]  Marylyn D. Ritchie,et al.  Knowledge-Driven Multi-Locus Analysis Reveals Gene-Gene Interactions Influencing HDL Cholesterol Level in Two Independent EMR-Linked Biobanks , 2011, PloS one.

[33]  F. V. van Eeuwijk,et al.  Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population , 2011, Proceedings of the National Academy of Sciences.

[34]  Peter J. Bradbury,et al.  Genome-wide association study of leaf architecture in the maize nested association mapping population , 2011, Nature Genetics.

[35]  Naomi R. Wray,et al.  Synthetic Associations Created by Rare Variants Do Not Explain Most GWAS Results , 2011, PLoS biology.

[36]  Allison M. Louthan,et al.  Comparing the adaptive landscape across trait types: larger QTL effect size in traits under biotic selection , 2011, BMC Evolutionary Biology.

[37]  Joy Bergelson,et al.  Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana , 2010, Nature Reviews Genetics.

[38]  Joy Bergelson,et al.  Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana , 2010, Proceedings of the National Academy of Sciences.

[39]  Eleftheria Zeggini,et al.  Rare variant association analysis methods for complex traits. , 2010, Annual review of genetics.

[40]  M. Nordborg,et al.  Conditions Under Which Genome-Wide Association Studies Will be Positively Misleading , 2010, Genetics.

[41]  M. Nordborg,et al.  A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven by Natural Variation of the Sodium Transporter AtHKT1;1 , 2010, PLoS genetics.

[42]  Gaurav Bhatia,et al.  A Covering Method for Detecting Genetic Associations between Rare Variants and Common Phenotypes , 2010, PLoS Comput. Biol..

[43]  Joy Bergelson,et al.  Linkage and Association Mapping of Arabidopsis thaliana Flowering Time in Nature , 2010, PLoS genetics.

[44]  Zhiwu Zhang,et al.  Mixed linear model approach adapted for genome-wide association studies , 2010, Nature Genetics.

[45]  D. Thomas,et al.  Gene–environment-wide association studies: emerging approaches , 2010, Nature Reviews Genetics.

[46]  David B. Goldstein,et al.  Rare Variants Create Synthetic Genome-Wide Associations , 2010, PLoS biology.

[47]  Bjarni J. Vilhjálmsson,et al.  Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines , 2010 .

[48]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[49]  R. Mott,et al.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana , 2009, PLoS genetics.

[50]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[51]  H. Cordell Detecting gene–gene interactions that underlie human diseases , 2009, Nature Reviews Genetics.

[52]  Frank Johannes,et al.  Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits , 2009, PLoS genetics.

[53]  Jonathan Flint,et al.  Genetic architecture of quantitative traits in mice, flies, and humans. , 2009, Genome research.

[54]  Detlef Weigel,et al.  QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines , 2009, PloS one.

[55]  A. Korol,et al.  Genetics of phenotypic plasticity: QTL analysis in barley, Hordeum vulgare , 2009, Heredity.

[56]  P. Phillips Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems , 2008, Nature Reviews Genetics.

[57]  S. Leal,et al.  Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. , 2008, American journal of human genetics.

[58]  W. Bodmer,et al.  Common and rare variants in multifactorial susceptibility to common diseases , 2008, Nature Genetics.

[59]  W. G. Hill,et al.  Heritability in the genomics era — concepts and misconceptions , 2008, Nature Reviews Genetics.

[60]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[61]  Snæbjörn Pálsson,et al.  Genetic determinants of hair, eye and skin pigmentation in Europeans , 2007, Nature Genetics.

[62]  Detlef Weigel,et al.  Recombination and linkage disequilibrium in Arabidopsis thaliana , 2007, Nature Genetics.

[63]  M. Purugganan,et al.  The Genetic Architecture of Shoot Branching in Arabidopsis thaliana: A Comparative Assessment of Candidate Gene Associations vs. Quantitative Trait Locus Mapping , 2007, Genetics.

[64]  Keyan Zhao,et al.  An Arabidopsis Example of Association Mapping in Structured Samples , 2006, PLoS genetics.

[65]  M. McMullen,et al.  A unified mixed-model method for association mapping that accounts for multiple levels of relatedness , 2006, Nature Genetics.

[66]  D. Hunter Gene–environment interactions in human diseases , 2005, Nature Reviews Genetics.

[67]  P. Donnelly,et al.  Genome-wide strategies for detecting multiple loci that influence complex diseases , 2005, Nature Genetics.

[68]  M. Daly,et al.  Genome-wide association studies for common diseases and complex traits , 2005, Nature Reviews Genetics.

[69]  James K. M. Brown,et al.  QTL analysis of flowering time inArabidopsis thaliana , 1995, Molecular and General Genetics MGG.

[70]  M. Koornneef,et al.  Naturally occurring genetic variation in Arabidopsis thaliana. , 2004, Annual review of plant biology.

[71]  A. Paterson,et al.  QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana , 1994, Molecular and General Genetics MGG.

[72]  Justin O Borevitz,et al.  The Impact of Genomics on the Study of Natural Variation in Arabidopsis , 2003, Plant Physiology.

[73]  G. Coupland,et al.  Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. , 1998, Genetics.