OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation

We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross–Pitaevskii (GP) equation for a Bose–Einstein condensate in one, two, and three spatial dimensions, optimized for use with GNU and Intel compilers. We use the split-step Crank–Nicolson algorithm for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-stationary solutions, respectively. The present OpenMP programs are designed for computers with multi-core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful comments for the users. All input parameters are listed at the beginning of each program. Different output files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc. We also present speedup test results for new versions of the programs.

[1]  A. Paredes,et al.  Interference of Dark Matter Solitons and Galactic Offsets , 2015, 1512.05121.

[2]  A. Pelster,et al.  Analytical and numerical study of dirty bosons in a quasi-one-dimensional harmonic trap , 2015, 1510.04985.

[3]  K. Porsezian,et al.  Study of implosion in an attractive Bose-Einstein condensate , 2016, 1706.06356.

[5]  K. Porsezian,et al.  Disorder-induced vortex lattice melting in a Bose-Einstein condensate , 2016, 1601.00071.

[6]  P. S. Vinayagam,et al.  Bright soliton dynamics in spin orbit-Rabi coupled Bose-Einstein condensates , 2017, Commun. Nonlinear Sci. Numer. Simul..

[7]  R. Sakhel,et al.  Elements of Vortex-Dipole Dynamics in a Nonuniform Bose–Einstein Condensate , 2016 .

[8]  K. Porsezian,et al.  Modulation instability in quasi-two-dimensional spin–orbit coupled Bose–Einstein condensates , 2016, Journal of Physics B: Atomic, Molecular and Optical Physics.

[9]  R. Sakhel,et al.  Application of the Lagrangian variational method to a one-dimensional Bose gas in a dimple trap , 2017 .

[10]  B. Chen,et al.  Dipole modes of a superfluid Bose–Fermi mixture in the BCS-BEC crossover , 2017 .

[11]  Paulsamy Muruganandam,et al.  Dynamics of trapped interacting vortices in Bose–Einstein condensates: a role of breathing degree of freedom , 2016, 1607.00201.

[12]  Antun Balaz,et al.  Excitation spectra of a Bose-Einstein condensate with an angular spin-orbit coupling , 2016 .

[13]  Chen-Yen Lai,et al.  Challenges and constraints of dynamically emerged source and sink in atomtronic circuits: From closed-system to open-system approaches , 2016, Scientific Reports.

[14]  Golam Ali Sekh,et al.  Bouncing dynamics of Bose–Einstein condensates under the effects of gravity , 2017 .

[15]  Antun Balaz,et al.  Conditions for order and chaos in the dynamics of a trapped Bose-Einstein condensate in coordinate and energy space , 2016, 1604.01349.

[16]  Boris A. Malomed,et al.  Stable multiple vortices in collisionally inhomogeneous attractive Bose-Einstein condensates , 2015, 1510.02223.

[17]  Ionut Danaila,et al.  A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation , 2016, Comput. Phys. Commun..

[18]  M Senthilvelan,et al.  Manipulating localized matter waves in multicomponent Bose-Einstein condensates. , 2016, Physical review. E.

[19]  Antun Balaz,et al.  Faraday and resonant waves in binary collisionally-inhomogeneous Bose–Einstein condensates , 2016, 1608.01580.

[20]  Roger R. Sakhel,et al.  On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas , 2015 .

[21]  Luis E. Young-S.,et al.  Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap , 2015, Comput. Phys. Commun..

[22]  Claus Lämmerzahl,et al.  ATUS-PRO: A FEM-based solver for the time-dependent and stationary Gross-Pitaevskii equation , 2015, Comput. Phys. Commun..

[23]  Vladimir Loncar,et al.  OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross-Pitaevskii equation , 2016, Comput. Phys. Commun..

[24]  A. Pelster,et al.  Statics and dynamics of quasi one-dimensional Bose–Einstein condensate in harmonic and dimple trap , 2015, 1508.05482.

[25]  R. Radha,et al.  Solitons under spatially localized cubic-quintic-septimal nonlinearities , 2017, 1705.06017.

[26]  S. K. Adhikari Stable and mobile two-dimensional dipolar ring-dark-in-bright Bose–Einstein condensate soliton , 2016, 1601.01519.

[27]  S. K. Adhikari Elastic collision and breather formation of spatiotemporal vortex light bullets in a cubic-quintic nonlinear medium , 2017, 1704.00714.

[28]  Magdalena Stobińska,et al.  Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity , 2016, Comput. Phys. Commun..

[29]  A. R. Sakhel Long-time averaged dynamics of a Bose–Einstein condensate in a bichromatic optical lattice with external harmonic confinement , 2015, 1511.02958.

[30]  Emerson Chiquillo,et al.  Harmonically trapped attractive and repulsive spin–orbit and Rabi coupled Bose–Einstein condensates , 2017, 1801.05321.

[31]  S. Adhikari,et al.  Statics and dynamics of a self-bound dipolar matter-wave droplet , 2017, 1701.03762.

[32]  S. K. Adhikari,et al.  Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2009, Comput. Phys. Commun..

[33]  A. Pelster,et al.  Quasi one-dimensional Bose–Einstein condensate in a gravito-optical surface trap , 2015, 1509.05987.

[34]  Vladimir Loncar,et al.  CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap , 2016, Comput. Phys. Commun..

[35]  Weizhu Bao,et al.  Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT , 2015, 1504.02897.

[36]  S. K. Adhikari,et al.  Vortex-bright solitons in a spin-orbit-coupled spin-1 condensate , 2017 .

[37]  Sadhan K. Adhikari,et al.  OpenMP Fortran and C programs for solving the time-dependent Gross-Pitaevskii equation in an anisotropic trap , 2016, Comput. Phys. Commun..

[38]  Axel Pelster,et al.  Numerical study of localized impurity in a Bose-Einstein condensate , 2016 .

[39]  S. K. Adhikari Two-dimensional bright and dark-in-bright dipolar Bose–Einstein condensate solitons on a one-dimensional optical lattice , 2016, 1606.03937.

[40]  Haifeng Jiang,et al.  Topological defect formation in rotating binary dipolar Bose–Einstein condensate , 2016 .

[41]  H. Rabitz,et al.  Optimal nonlinear coherent mode transitions in Bose-Einstein condensates utilizing spatiotemporal controls , 2016, 1603.08475.

[42]  A. M. Martin,et al.  Vortices and vortex lattices in quantum ferrofluids , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  Paulsamy Muruganandam,et al.  Three-dimensional vortex structures in a rotating dipolar Bose–Einstein condensate , 2015, 1506.08184.

[44]  Paulsamy Muruganandam,et al.  Hybrid OpenMP/MPI programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2016, Comput. Phys. Commun..

[45]  A. Pelster,et al.  Time-of-flight expansion of trapped dipolar Fermi gases: From the collisionless to the hydrodynamic regime , 2016, 1608.06448.

[46]  Paulsamy Muruganandam,et al.  C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2012, Comput. Phys. Commun..

[47]  Axel Pelster,et al.  Sculpting quasi-one-dimensional Bose-Einstein condensate to generate calibrated matter waves , 2015, 1509.03826.

[48]  Chen-Yen Lai,et al.  Geometry-Induced Memory Effects in Isolated Quantum Systems: Cold-Atom Applications , 2015, 1510.08978.