Mir125b-2 imprinted in human but not mouse brain regulates hippocampal function and circuit in mice

[1]  R. Bartesaghi Brain circuit pathology in Down syndrome: from neurons to neural networks , 2022, Reviews in the neurosciences.

[2]  Yi-shuian Huang,et al.  Neuronal splicing regulator RBFOX3 mediates seizures via regulating Vamp1 expression preferentially in NPY-expressing GABAergic neurons , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Ferguson-Smith,et al.  Balanced gene dosage control rather than parental origin underpins genomic imprinting , 2022, Nature Communications.

[4]  S. Gabriel,et al.  Rare coding variants in ten genes confer substantial risk for schizophrenia , 2022, Nature.

[5]  Hsien-Sung Huang,et al.  Mouse hybrid genome mediates diverse brain phenotypes with the specificity of reciprocal crosses , 2022, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  D. A. Lieberman From Neurons to Neural Networks , 2020 .

[7]  S. Antonarakis,et al.  Down syndrome , 2020, Nature Reviews Disease Primers.

[8]  N. Benvenisty,et al.  Genomic Imprinting and Physiological Processes in Mammals , 2019, Cell.

[9]  M. Scarsella,et al.  Dysregulated miR-155 and miR-125b Are Related to Impaired B-cell Responses in Down Syndrome , 2018, Front. Immunol..

[10]  Kaori Takehara-Nishiuchi,et al.  Neural representations of time-linked memory , 2018, Neurobiology of Learning and Memory.

[11]  C. Peng,et al.  Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation , 2018, Front. Endocrinol..

[12]  Chun-Yen Lin,et al.  Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics , 2018, Human molecular genetics.

[13]  H. Coon,et al.  Allele-specific expression in a family quartet with autism reveals mono-to-biallelic switch and novel transcriptional processes of autism susceptibility genes , 2018, Scientific Reports.

[14]  Brian R. Lee,et al.  Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method , 2018, Journal of visualized experiments : JoVE.

[15]  K. Kuo,et al.  RBFOX3/NeuN is dispensable for visual function , 2018, PloS one.

[16]  N. Plesnila,et al.  RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute Ischemic Stroke , 2017, Circulation research.

[17]  J. Yakel,et al.  Cholinergic modulation of the hippocampal region and memory function , 2017, Journal of neurochemistry.

[18]  Farooq Rashid,et al.  Primate-specific Long Non-coding RNAs and MicroRNAs , 2017, Genom. Proteom. Bioinform..

[19]  Dennis Norris,et al.  Short-Term Memory and Long-Term Memory are Still Different , 2017, Psychological bulletin.

[20]  Hsien-Sung Huang,et al.  Neuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis , 2016, PloS one.

[21]  Hsien-Sung Huang,et al.  Analysis of Genome-Wide Monoallelic Expression Patterns in Three Major Cell Types of Mouse Visual Cortex Using Laser Capture Microdissection , 2016, PloS one.

[22]  W. Chan,et al.  International Journal of Molecular Sciences Micrornas: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases , 2022 .

[23]  J. Cavaille,et al.  Deletion of the miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 locus enhances anxiety-related behaviour. , 2016, Human molecular genetics.

[24]  Gal Chechik,et al.  Gene Expression Switching of Receptor Subunits in Human Brain Development , 2015, PLoS Comput. Biol..

[25]  Hsien-Sung Huang,et al.  RBFOX3/NeuN is Required for Hippocampal Circuit Balance and Function , 2015, Scientific Reports.

[26]  Duan Ma,et al.  MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells , 2015, International journal of molecular medicine.

[27]  Eva Benito,et al.  MicroRNA‐125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease , 2014, The EMBO journal.

[28]  J. Cheverud,et al.  Genomic imprinting and parent-of-origin effects on complex traits , 2013, Nature Reviews Genetics.

[29]  Yumeng Sun,et al.  Diverse functions of miR-125 family in different cell contexts , 2013, Journal of Hematology & Oncology.

[30]  W. Lukiw,et al.  microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). , 2012, International journal of biochemistry and molecular biology.

[31]  H. Soreq,et al.  Cholinesterase-Targeting microRNAs Identified in silico Affect Specific Biological Processes , 2011, Front. Mol. Neurosci..

[32]  P. Sharp,et al.  Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125 b and miR-132 , 2010 .

[33]  T. Elton,et al.  Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins , 2010, RNA biology.

[34]  S. Orkin,et al.  miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. , 2010, Genes & development.

[35]  P. Sharp,et al.  Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125 b and miR-132 , 2010 .

[36]  Henry Yang,et al.  MicroRNA-125b Promotes Neuronal Differentiation in Human Cells by Repressing Multiple Targets , 2009, Molecular and Cellular Biology.

[37]  Yoko Ito,et al.  Gene Dosage Effects of the Imprinted Delta-Like Homologue 1 (Dlk1/Pref1) in Development: Implications for the Evolution of Imprinting , 2009, PLoS genetics.

[38]  I. Bozzoni,et al.  Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells , 2008, The EMBO journal.

[39]  William Davies,et al.  Genomic imprinting effects on brain development and function , 2007, Nature Reviews Neuroscience.

[40]  D. Treit,et al.  The role of hippocampus in anxiety: intracerebral infusion studies , 2007, Behavioural pharmacology.

[41]  A. Wood,et al.  A Screen for Retrotransposed Imprinted Genes Reveals an Association between X Chromosome Homology and Maternal Germ-Line Methylation , 2006, PLoS genetics.

[42]  T. Mukai,et al.  Comparative analyses of genomic imprinting and CpG island-methylation in mouse Murr1 and human MURR1 loci revealed a putative imprinting control region in mice. , 2006, Gene.

[43]  Michael J. Frank,et al.  Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems , 2004, Neurobiology of Learning and Memory.

[44]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[45]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[46]  P. Luiten,et al.  Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory , 1999, Progress in Neurobiology.

[47]  M. Oshimura,et al.  Mouse U2af1-rs1 is a neomorphic imprinted gene , 1997, Molecular and cellular biology.

[48]  OUP accepted manuscript , 2022, Human Molecular Genetics.

[49]  G. Schratt,et al.  MicroRNA function in the nervous system. , 2011, Progress in molecular biology and translational science.

[50]  J. Rawlins,et al.  T-maze alternation in the rodent , 2006, Nature Protocols.