Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2

Abstract Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS2) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials.

[1]  H. Terrones,et al.  Multivalency-Induced Band Gap Opening at MoS2 Edges , 2015 .

[2]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[3]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[4]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[5]  Jianbin Luo,et al.  Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: a first-principles study , 2014, Nanotechnology.

[6]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[7]  H. Hölscher,et al.  Friction at atomic-scale surface steps: experiment and theory. , 2008, Physical review letters.

[8]  V. Shenoy,et al.  Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. , 2012, ACS nano.

[9]  H. Tsuboi,et al.  A computational chemistry study on friction of h-MoS₂. Part II. Friction anisotropy. , 2010, The journal of physical chemistry. B.

[10]  Oriol López Sánchez,et al.  Large-area MoS2 grown using H2S as the sulphur source , 2015 .

[11]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[12]  Jun Lou,et al.  Direct growth of graphene/hexagonal boron nitride stacked layers. , 2011, Nano letters.

[13]  M. Iqbal,et al.  Modification of the structural and electrical properties of graphene layers by Pt adsorbates , 2014, Science and technology of advanced materials.

[14]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[15]  Hui Xie,et al.  Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor. , 2008, The Review of scientific instruments.

[16]  Single-layer MoS2 roughness and sliding friction quenching by interaction with atomically flat substrates , 2014, 1407.2202.

[17]  Martin L. Dunn,et al.  Bending rigidity and Gaussian bending stiffness of single-layered graphene. , 2013, Nano letters.

[18]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[19]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[20]  Large-areaMoS 2 grown using H 2 S as the sulphur source , 2015 .

[21]  B. Hammer,et al.  Bandgap opening in graphene induced by patterned hydrogen adsorption. , 2010, Nature materials.

[22]  Amritesh Rai,et al.  Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation. , 2015, Nano letters.

[23]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[24]  M. Terrones,et al.  Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons , 2009, Nanotechnology.

[25]  June Yeong Lim,et al.  Low Power Consumption Complementary Inverters with n-MoS2 and p-WSe2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits. , 2015, ACS applied materials & interfaces.

[26]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[27]  Phaedon Avouris,et al.  Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. , 2015, Nano letters.

[28]  J. Eom,et al.  Chemical doping of MoS2 multilayer by p-toluene sulfonic acid , 2015, Science and technology of advanced materials.

[29]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[30]  S. Sanvito,et al.  Electric field effects on armchair MoS2 nanoribbons. , 2012, ACS nano.

[31]  E. Molinari,et al.  Sliding properties of MoS2 layers: load and interlayer orientation effects , 2014 .

[32]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[33]  H. Hölscher,et al.  Modelling of the scan process in lateral force microscopy , 1997 .

[34]  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[35]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[36]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[37]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[38]  M. Hirano Atomistics of friction , 2006 .

[39]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[40]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[41]  Oded Hod,et al.  Electronic structure and stability of semiconducting graphene nanoribbons. , 2006, Nano letters.

[42]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[43]  I. Watanabe,et al.  Effects of Ga-induced reconstructed surfaces and atomic steps on the morphology of GaSb islands on Si(1 0 0) , 2015 .

[44]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[45]  Motohisa Hirano Atomistics of Friction , 2005 .

[46]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[47]  G. Flynn,et al.  Edge structures for nanoscale graphene islands on Co(0001) surfaces. , 2014, ACS nano.

[48]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[49]  Clausen,et al.  Atomic-scale structure of single-layer MoS2 nanoclusters , 2000, Physical review letters.

[50]  Shengqian Ma Bandgap modulation and hydrogen storage with Cr-doped BN sheets , 2015 .