The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases—Part III: In-Silico Molecular Docking Investigations

Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.

[1]  S. Croft,et al.  Mapping the binding site for gossypol-like inhibitors of Plasmodium falciparum lactate dehydrogenase. , 2005, Molecular and biochemical parasitology.

[2]  I. Gilbert,et al.  Structural basis for the efficient phosphorylation of AZT-MP (3'-azido-3'-deoxythymidine monophosphate) and dGMP by Plasmodium falciparum type I thymidylate kinase. , 2010, The Biochemical journal.

[3]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[4]  Kun-Yi Hsin,et al.  An improved strategy for the crystallization of Leishmania mexicana pyruvate kinase. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[5]  Andrew G. Watts,et al.  Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. , 2004, Structure.

[6]  L. Prade,et al.  X-ray Structure of Plasmepsin II Complexed with a Potent Achiral Inhibitor* , 2005, Journal of Biological Chemistry.

[7]  Craig D. Smith,et al.  Crystal structure of Plasmodium falciparum phosphoglycerate kinase: evidence for anion binding in the basic patch. , 2011, Biochemical and biophysical research communications.

[8]  S. S. Ray,et al.  IN SILICO SCREENING TO ELUCIDATE THE THERAPEUTIC POTENTIALS OF ASPARAGAMINE A , 2014 .

[9]  P. Focia,et al.  Interactions at the dimer interface influence the relative efficiencies for purine nucleotide synthesis and pyrophosphorolysis in a phosphoribosyltransferase. , 2004, Journal of molecular biology.

[10]  J. Dame,et al.  Recombinant plasmepsin 1 from the human malaria parasite plasmodium falciparum: enzymatic characterization, active site inhibitor design, and structural analysis. , 2009, Biochemistry.

[11]  G. Oliva,et al.  Structure of Trypanosoma cruzi glycosomal glyceraldehyde‐3‐phosphate dehydrogenase complexed with chalepin, a natural product inhibitor, at 1.95 Å resolution , 2002, FEBS letters.

[12]  W. Hol,et al.  Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases. , 2000, Journal of molecular biology.

[13]  M. Waterman,et al.  Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Δ7-24, 25-dihydrolanosterol[S] , 2012, Journal of Lipid Research.

[14]  M. Tavares,et al.  Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. , 2016, Parasitology international.

[15]  J. Gut,et al.  4-Aminopyridyl-Based CYP51 Inhibitors as Anti-Trypanosoma cruzi Drug Leads with Improved Pharmacokinetic Profile and in Vivo Potency , 2014, Journal of medicinal chemistry.

[16]  Bradley I. Coleman,et al.  Characterization and Structural Studies of the Plasmodium falciparum Ubiquitin and Nedd8 Hydrolase UCHL3 , 2009, The Journal of Biological Chemistry.

[17]  R. L. Brady,et al.  Conservation of structure and activity in Plasmodium purine nucleoside phosphorylases , 2009, BMC Structural Biology.

[18]  W G Hol,et al.  Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. , 1998, Biochemistry.

[19]  Ting-Kai Chang,et al.  Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR investigation. , 2009, Journal of the American Chemical Society.

[20]  M. Scotti,et al.  Computational and Investigative Study of Flavonoids Active against Trypanosoma cruzi and Leishmania spp , 2015, Natural product communications.

[21]  M. Noble,et al.  The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes , 1991, Proteins.

[22]  R E Cachau,et al.  Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Parthasarathy,et al.  Structure of Plasmodium falciparum Triose-phosphate Isomerase-2-Phosphoglycerate Complex at 1.1-Å Resolution* , 2003, Journal of Biological Chemistry.

[24]  M. Noble,et al.  The crystal structure of the “open” and the “closed” conformation of the flexible loop of trypanosomal triosephosphate isomerase , 1991, Proteins.

[25]  J Mitchell Guss,et al.  Structure and inhibition of orotidine 5'-monophosphate decarboxylase from Plasmodium falciparum. , 2008, Biochemistry.

[26]  C. Dunn,et al.  The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design , 1996, Nature Structural Biology.

[27]  R. Krauth-Siegel,et al.  Parasite-specific trypanothione reductase as a drug target molecule , 2003, Parasitology Research.

[28]  S. Mowbray,et al.  Structures of type B ribose 5‐phosphate isomerase from Trypanosoma cruzi shed light on the determinants of sugar specificity in the structural family , 2011, The FEBS journal.

[29]  M. Murthy,et al.  Biochemical and structural characterization of residue 96 mutants of Plasmodium falciparum triosephosphate isomerase: active-site loop conformation, hydration and identification of a dimer-interface ligand-binding site. , 2009, Acta crystallographica. Section D, Biological crystallography.

[30]  J. Whisstock,et al.  X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. , 2012, Journal of molecular biology.

[31]  E. Oldfield,et al.  Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases , 2008, Proteins.

[32]  R. Sessions,et al.  Chloroquine Binds in the Cofactor Binding Site ofPlasmodium falciparum Lactate Dehydrogenase* , 1999, The Journal of Biological Chemistry.

[33]  S. Jain,et al.  Crystal Structure of Malaria Parasite Nucleosome Assembly Protein , 2009, Journal of Biological Chemistry.

[34]  S. Müller,et al.  Structure of Leishmania major cysteine synthase , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[35]  H. Ke,et al.  Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite‐selective inhibitors , 2007, Molecular microbiology.

[36]  Liang Shen,et al.  Interactions of curcumin with the PfATP6 model and the implications for its antimalarial mechanism. , 2009, Bioorganic & medicinal chemistry letters.

[37]  J. Luft,et al.  Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies , 2008, Molecular microbiology.

[38]  T. Keller,et al.  A practical view of 'druggability'. , 2006, Current opinion in chemical biology.

[39]  W. Hunter,et al.  Inhibition of Leishmania major pteridine reductase by 2,4,6-triaminoquinazoline: structure of the NADPH ternary complex. , 2004, Acta crystallographica. Section D, Biological crystallography.

[40]  W. de Souza,et al.  Tomatidine promotes the inhibition of 24-alkylated sterol biosynthesis and mitochondrial dysfunction in Leishmania amazonensis promastigotes , 2012, Parasitology.

[41]  M. Murthy,et al.  Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. , 2013, The Biochemical journal.

[42]  I. Gilbert,et al.  Design, Synthesis, and Evaluation of 5′‐Diphenyl Nucleoside Analogues as Inhibitors of the Plasmodium falciparum dUTPase , 2011, ChemMedChem.

[43]  Siegfried S. F. Leung,et al.  Structural Characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei Bound to the Antifungal Drugs Posaconazole and Fluconazole , 2010, PLoS neglected tropical diseases.

[44]  K. Hodgson,et al.  Crystal structure of glyceraldehyde‐3‐phosphate dehydrogenase from Plasmodium falciparum at 2.25 Å resolution reveals intriguing extra electron density in the active site , 2005, Proteins.

[45]  N. Rakesh,et al.  Comparative genomic studies and in-silco strategies on Leishmania brazilensis, Leishmania infantum and Leishmania major: Conserved features, putative functions and potential drug target , 2013 .

[46]  A. Ganesan The impact of natural products upon modern drug discovery. , 2008, Current opinion in chemical biology.

[47]  S. Krungkrai,et al.  Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by Plasmodium falciparum OMP decarboxylase. , 2007, Journal of biochemistry.

[48]  S. Trapani,et al.  Crystal structure of the dimeric phosphoenolpyruvate carboxykinase (PEPCK) from Trypanosoma cruzi at 2 A resolution. , 2001, Journal of molecular biology.

[49]  M. Scotti,et al.  In-silico analyses of natural products on leishmania enzyme targets. , 2015, Mini reviews in medicinal chemistry.

[50]  R. Fletterick,et al.  Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Evans,et al.  Plasmodium falciparum Purine Nucleoside Phosphorylase , 2004, Journal of Biological Chemistry.

[52]  F. Vicente,et al.  Contribution of Natural Products to Drug Discovery in Tropical Diseases , 2016 .

[53]  E. Poduch,et al.  Structure-activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase. , 2008, Journal of medicinal chemistry.

[54]  A. Tarun,et al.  Potential of lichen secondary metabolites against Plasmodium liver stage parasites with FAS-II as the potential target. , 2013, Journal of natural products.

[55]  A. Schnaufer,et al.  High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. , 2004, Journal of molecular biology.

[56]  Djamel Medjahed,et al.  Structures of Ser205 mutant plasmepsin II from Plasmodium falciparum at 1.8 A in complex with the inhibitors rs367 and rs370. , 2002, Acta crystallographica. Section D, Biological crystallography.

[57]  W. Lehmann,et al.  Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. , 2013, Biochemical pharmacology.

[58]  S. Ealick,et al.  The Leishmania donovani UMP Synthase Is Essential for Promastigote Viability and Has an Unusual Tetrameric Structure That Exhibits Substrate-controlled Oligomerization* , 2011, The Journal of Biological Chemistry.

[59]  R. L. Berens,et al.  Purine metabolism in Leishmania donovani amastigotes and promastigotes. , 1983, Molecular and biochemical parasitology.

[60]  J. Tropea,et al.  Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease. , 2012, Molecular and biochemical parasitology.

[61]  Hualiang Jiang,et al.  Supplemental Information Structural Basis for the Regulation of Cysteine-Protease Activity by a New Class of Protease Inhibitors in Plasmodium , 2011 .

[62]  Alexey Bochkarev,et al.  Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. , 2007, Molecular and biochemical parasitology.

[63]  L. Scapozza,et al.  Crystal Structures of T. b. rhodesiense Adenosine Kinase Complexed with Inhibitor and Activator: Implications for Catalysis and Hyperactivation , 2011, PLoS neglected tropical diseases.

[64]  V. Dubey,et al.  IDENTIFICATION OF NOVEL INHIBITOR OF TRYPANOTHIONE SYNTHASE FROM TWO LEISHMANIA SPECIES: COMPARATIVE IN SILICO ANALYSIS , 2013 .

[65]  Brian J. Smith,et al.  Structure of Leishmania mexicana phosphomannomutase highlights similarities with human isoforms. , 2006, Journal of molecular biology.

[66]  W. Hol,et al.  Crystals of peptide deformylase from Plasmodium falciparum reveal critical characteristics of the active site for drug design. , 2002, Structure.

[67]  J. Dalton,et al.  Synthesis and Structure − Activity Relationships of Phosphonic Arginine Mimetics as Inhibitors of the M 1 and M 17 Aminopeptidases from Plasmodium falciparum , 2013 .

[68]  L. Prade,et al.  Achiral, Cheap, and Potent Inhibitors of Plasmepsins I, II, and IV , 2006, ChemMedChem.

[69]  N. Pathak,et al.  In Silico Elucidation and Inhibition Studies of Selected Phytoligands Against Mitogen-Activated Protein Kinases of Protozoan Parasites , 2014, Interdisciplinary Sciences: Computational Life Sciences.

[70]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[71]  Carlos A. Montanari,et al.  Non-peptidic Cruzain Inhibitors with Trypanocidal Activity Discovered by Virtual Screening and In Vitro Assay , 2013, PLoS neglected tropical diseases.

[72]  Ian H. Gilbert,et al.  One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening , 2009, Journal of medicinal chemistry.

[73]  R. Wierenga,et al.  Structural determinants for ligand binding and catalysis of triosephosphate isomerase. , 2001, European journal of biochemistry.

[74]  R. Isturiz,et al.  Chagas Disease , 2021, Neglected Tropical Diseases.

[75]  J. Burrows,et al.  Discovering New Medicines to Control and Eradicate Malaria , 2011 .

[76]  Theresa M. Lyons,et al.  Exploiting structural analysis, in silico screening, and serendipity to identify novel inhibitors of drug-resistant falciparum malaria. , 2009, ACS chemical biology.

[77]  Joel S. Freundlich,et al.  X-ray Structural Analysis of Plasmodium falciparum Enoyl Acyl Carrier Protein Reductase as a Pathway toward the Optimization of Triclosan Antimalarial Efficacy* , 2007, Journal of Biological Chemistry.

[78]  J. Luft,et al.  Structures of Plasmodium falciparum purine nucleoside phosphorylase complexed with sulfate and its natural substrate inosine. , 2005, Acta crystallographica. Section D, Biological crystallography.

[79]  J. McKerrow,et al.  In Vitro and In Vivo Studies of the Trypanocidal Properties of WRR-483 against Trypanosoma cruzi , 2010, PLoS neglected tropical diseases.

[80]  M. Bolognesi,et al.  Ferredoxin-NADP+ reductase from Plasmodium falciparum undergoes NADP+-dependent dimerization and inactivation: functional and crystallographic analysis. , 2007, Journal of molecular biology.

[81]  G. Schneider,et al.  Binding to Large Enzyme Pockets: Small‐Molecule Inhibitors of Trypanothione Reductase , 2014, ChemMedChem.

[82]  Xavier Soberón,et al.  Evolutionary walk between (β/α)(8) barrels: catalytic migration from triosephosphate isomerase to thiamin phosphate synthase. , 2012, Journal of molecular biology.

[83]  W. Roush,et al.  Expanding the Binding Envelope of CYP51 Inhibitors Targeting Trypanosoma cruzi with 4‐Aminopyridyl‐Based Sulfonamide Derivatives , 2014, Chembiochem : a European journal of chemical biology.

[84]  Comparison of the structures and the crystal contacts of trypanosomal triosephosphate isomerase in four different crystal forms , 1994, Protein science : a publication of the Protein Society.

[85]  P. Neubauer,et al.  Functional role of the conserved active site proline of triosephosphate isomerase. , 2007, Biochemistry.

[86]  J. Cano,et al.  Leishmaniasis Worldwide and Global Estimates of Its Incidence , 2012, PloS one.

[87]  Miklos Feher,et al.  Property Distributions: Differences between Drugs, Natural Products, and Molecules from Combinatorial Chemistry , 2003, J. Chem. Inf. Comput. Sci..

[88]  R. L. Brady,et al.  Structure of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH. , 2005, Biochemistry.

[89]  F. Saul,et al.  Structural and Functional Insights into the Malaria Parasite Moving Junction Complex , 2012, PLoS pathogens.

[90]  Michael Nilges,et al.  Insights into the enzymatic mechanism of 6-phosphogluconolactonase from Trypanosoma brucei using structural data and molecular dynamics simulation. , 2009, Journal of molecular biology.

[91]  Pedro M Alzari,et al.  The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. , 2002, Molecular cell.

[92]  Edgar Vázquez-Contreras,et al.  The folding pathway of triosephosphate isomerase. , 2008, Progress in molecular biology and translational science.

[93]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[94]  Giuseppe Marco Randazzo,et al.  Computational Studies on Sirtuins from Trypanosoma cruzi: Structures, Conformations and Interactions with Phytochemicals , 2014, PLoS neglected tropical diseases.

[95]  W. Hol,et al.  Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5. , 2008, Journal of molecular biology.

[96]  P. Neubauer,et al.  Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase. , 2010, Acta crystallographica. Section D, Biological crystallography.

[97]  V. Dubey,et al.  Screening natural products database for identification of potential antileishmanial chemotherapeutic agents , 2011, Interdisciplinary Sciences: Computational Life Sciences.

[98]  F. Buckner,et al.  Structures of Trypanosoma brucei Methionyl-tRNA Synthetase with Urea-Based Inhibitors Provide Guidance for Drug Design against Sleeping Sickness , 2014, PLoS neglected tropical diseases.

[99]  R. Wierenga,et al.  Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction‐intermediate analog: New insight in the proton transfer reaction mechanism , 2010, Proteins.

[100]  Werner Kaminsky,et al.  Structural Plasticity of Malaria Dihydroorotate Dehydrogenase Allows Selective Binding of Diverse Chemical Scaffolds* , 2009, The Journal of Biological Chemistry.

[101]  S. Phillips,et al.  The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity. , 1999, Journal of Molecular Biology.

[102]  L. Brinen,et al.  Crystal Structures of TbCatB and Rhodesain, Potential Chemotherapeutic Targets and Major Cysteine Proteases of Trypanosoma brucei , 2010, PLoS neglected tropical diseases.

[103]  Y. Lindqvist,et al.  Transketolase from Leishmania mexicana has a dual subcellular localization. , 2004, The Biochemical journal.

[104]  M. Berriman,et al.  The three-dimensional structure of a Plasmodium falciparum cyclophilin in complex with the potent anti-malarial cyclosporin A. , 2000, Journal of molecular biology.

[105]  P. Driscoll,et al.  Structural insights into the catalytic mechanism of Trypanosoma cruzi GPXI (glutathione peroxidase-like enzyme I). , 2010, The Biochemical journal.

[106]  V. Schramm,et al.  Nucleoside Hydrolase from Leishmania major , 1999, The Journal of Biological Chemistry.

[107]  J. Whisstock,et al.  The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. , 2007, Structure.

[108]  Michael D. Urbaniak,et al.  A Novel Allosteric Inhibitor of the Uridine Diphosphate N-Acetylglucosamine Pyrophosphorylase from Trypanosoma brucei , 2013, ACS chemical biology.

[109]  R. Coppel,et al.  Cellular Effects of Curcumin on Plasmodium falciparum Include Disruption of Microtubules , 2013, PloS one.

[110]  M. Yogavel,et al.  Ligand-bound Structures Provide Atomic Snapshots for the Catalytic Mechanism of d-Amino Acid Deacylase* , 2009, The Journal of Biological Chemistry.

[111]  P. Karplus,et al.  Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. , 2003, Journal of molecular biology.

[112]  Jacob D. Durrant,et al.  Celastrol inhibits Plasmodium falciparum enoyl-acyl carrier protein reductase. , 2014, Bioorganic & medicinal chemistry.

[113]  M. Noble,et al.  Structures of the “open” and “closed” state of trypanosomal triosephosphate isomerase, as observed in a new crystal form: Implications for the reaction mechanism , 1993, Proteins.

[114]  I. Gilbert,et al.  dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors. , 2005, Structure.

[115]  K. No,et al.  Three-dimensional structure of Plasmodium falciparum Ca2+ -ATPase(PfATP6) and docking of artemisinin derivatives to PfATP6. , 2005, Bioorganic & medicinal chemistry letters.

[116]  D. Fidock,et al.  Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase* , 2002, The Journal of Biological Chemistry.

[117]  M. Noble,et al.  Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. , 2003, Structure.

[118]  A. Wlodawer,et al.  Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum. , 2011, Journal of structural biology.

[119]  R. Wierenga,et al.  High resolution crystal structures of triosephosphate isomerase complexed with its suicide inhibitors: The conformational flexibility of the catalytic glutamate in its closed, liganded active site , 2011, Protein science : a publication of the Protein Society.

[120]  S. Gulnik,et al.  Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from Plasmodium falciparum. , 2003, Journal of molecular biology.

[121]  I. Schlichting,et al.  The Structure of Trypanosoma cruzitrypanothione Reductase in the Oxidized and NADPH Reduced State , 1994, Proteins.

[122]  J. Steyaert,et al.  Structure and mechanism of the 6-oxopurine nucleosidase from Trypanosoma brucei brucei. , 2010, Biochemistry.

[123]  A. Fairlamb Chemotherapy of human African trypanosomiasis: current and future prospects. , 2003, Trends in parasitology.

[124]  E. Goldsmith,et al.  Altering the reaction specificity of eukaryotic ornithine decarboxylase. , 2000, Biochemistry.

[125]  Ian H. Gilbert,et al.  N-Myristoyltransferase inhibitors as new leads to treat sleeping sickness , 2010, Nature.

[126]  J. R. Roper,et al.  High-resolution crystal structure of Trypanosoma brucei UDP-galactose 4'-epimerase: a potential target for structure-based development of novel trypanocides. , 2003, Molecular and biochemical parasitology.

[127]  R. Banerjee,et al.  Structure of cyclophilin from Leishmania donovani bound to cyclosporin at 2.6 A resolution: correlation between structure and thermodynamic data. , 2009, Acta crystallographica. Section D, Biological crystallography.

[128]  T. Aoki,et al.  Structures of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with substrates and products: atomic resolution insights into mechanisms of dihydroorotate oxidation and fumarate reduction. , 2008, Biochemistry.

[129]  Ian H. Gilbert,et al.  Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography , 2011, Journal of medicinal chemistry.

[130]  W. Setzer,et al.  Comparative Molecular Docking of Antitrypanosomal Natural Products into Multiple Trypanosoma brucei Drug Targets , 2009, Molecules.

[131]  G Vriend,et al.  Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. , 1999, Protein engineering.

[132]  M. Kapoor,et al.  Structural basis for the variation in triclosan affinity to enoyl reductases. , 2004, Journal of molecular biology.

[133]  M. Jagannadham,et al.  Molecular docking study on the interaction between trypanothione reductase and mangiferin for antileishmanial activity , 2012 .

[134]  R. D. Walter,et al.  Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. , 2007, Journal of molecular biology.

[135]  J. McKerrow,et al.  R-Configuration of 4-Aminopyridyl-Based Inhibitors of CYP51 Confers Superior Efficacy Against Trypanosoma cruzi. , 2014, ACS medicinal chemistry letters.

[136]  J. Tanner,et al.  Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation. , 2012, Biochemistry.

[137]  N. Isaacs,et al.  Crystal Structure of Leishmania major Oligopeptidase B Gives Insight into the Enzymatic Properties of a Trypanosomatid Virulence Factor , 2010, The Journal of Biological Chemistry.

[138]  F. Buckner,et al.  Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. , 2013, Molecular and biochemical parasitology.

[139]  M. Berriman,et al.  Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. , 1999, Structure.

[140]  K. Wilson,et al.  On the catalytic mechanism of dimeric dUTPases. , 2013, The Biochemical journal.

[141]  L. Brinen,et al.  Crystal structures of reversible ketone-Based inhibitors of the cysteine protease cruzain. , 2003, Bioorganic & medicinal chemistry.

[142]  M. Barrett,et al.  A 2.8 A resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues. , 1998, Journal of molecular biology.

[143]  A. Fairlamb,et al.  Structural and mechanistic insights into type II trypanosomatid tryparedoxin-dependent peroxidases , 2008, The Biochemical journal.

[144]  Woldeamanuel A. Birru,et al.  Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases , 2010, Proceedings of the National Academy of Sciences.

[145]  M. Parsons,et al.  The Trypanosoma brucei Life Cycle Switch TbPTP1 Is Structurally Conserved and Dephosphorylates the Nucleolar Protein NOPP44/46* , 2010, The Journal of Biological Chemistry.

[146]  W. Hunter,et al.  Structural Biology and Crystallization Communications Structure of Recombinant Leishmania Donovani Pteridine Reductase Reveals a Disordered Active Site , 2022 .

[147]  S. D. de Castro,et al.  A critical review on Chagas disease chemotherapy. , 2002, Memorias do Instituto Oswaldo Cruz.

[148]  M. Murthy,et al.  Crystal structure of fully ligated adenylosuccinate synthetase from Plasmodium falciparum. , 2004, Journal of molecular biology.

[149]  J. Périé,et al.  Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid. , 2003, European journal of biochemistry.

[150]  N. Surolia,et al.  X‐ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibition , 2010, IUBMB life.

[151]  Stephen M Beverley,et al.  Structures of Leishmania major pteridine reductase complexes reveal the active site features important for ligand binding and to guide inhibitor design. , 2005, Journal of molecular biology.

[152]  F. Opperdoes,et al.  Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[153]  E. Coy-Barrera,et al.  In-Silico Analyses of Sesquiterpene-Related Compounds on Selected Leishmania Enzyme-Based Targets , 2014, Molecules.

[154]  P. Myler,et al.  Structure of a ribulose 5‐phosphate 3‐epimerase from Plasmodium falciparum , 2005, Proteins.

[155]  William N. Setzer,et al.  In-silico Leishmania Target Selectivity of Antiparasitic Terpenoids , 2013, Molecules.

[156]  Structure of D-tyrosyl-tRNATyr deacylase using home-source Cu Kalpha and moderate-quality iodide-SAD data: structural polymorphism and HEPES-bound enzyme states. , 2010, Acta crystallographica. Section D, Biological crystallography.

[157]  S. Withers,et al.  A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors. , 2008, Angewandte Chemie.

[158]  L. DeLucas,et al.  Crystal structure of Trypanosoma cruzi pteridine reductase 2 in complex with a substrate and an inhibitor. , 2005, Journal of structural biology.

[159]  M. P. Pinheiro,et al.  Target sites for the design of anti-trypanosomatid drugs based on the structure of dihydroorotate dehydrogenase. , 2013, Current pharmaceutical design.

[160]  Araceli,et al.  Identification and Activity of a Series of Azole-based Compounds with Lactate Dehydrogenase-directed Anti-malarial Activity* , 2004, Journal of Biological Chemistry.

[161]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[162]  M. Degano,et al.  Structures of purine nucleosidase from Trypanosoma brucei bound to isozyme-specific trypanocidals and a novel metalorganic inhibitor. , 2013, Acta crystallographica. Section D, Biological crystallography.

[163]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[164]  G Vriend,et al.  Refined 1.83 A structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. , 1991, Journal of molecular biology.

[165]  J. Whisstock,et al.  Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases , 2011, Proceedings of the National Academy of Sciences.

[166]  W. Kabsch,et al.  X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[167]  C. Wrenger,et al.  Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. , 2011, Journal of molecular biology.

[168]  G. Labesse,et al.  The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation , 2011, Molecular microbiology.

[169]  M. Soriano-garcia,et al.  Differences in the intersubunit contacts in triosephosphate isomerase from two closely related pathogenic trypanosomes. , 1998, Journal of molecular biology.

[170]  Ian H. Gilbert,et al.  Discovery of a Novel Class of Orally Active Trypanocidal N-Myristoyltransferase Inhibitors , 2011, Journal of medicinal chemistry.

[171]  N. Grishin,et al.  X-ray structure of ornithine decarboxylase from Trypanosoma brucei: the native structure and the structure in complex with alpha-difluoromethylornithine. , 1999, Biochemistry.

[172]  W G Hol,et al.  A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. , 2000, Structure.

[173]  M. Perbandt,et al.  Native and Inhibited Structure of a Mu class-related Glutathione S-transferase from Plasmodium falciparum* , 2004, Journal of Biological Chemistry.

[174]  P. Tripathi,et al.  Inhibition of P. falciparum PFATP6 by curcumin and its derivatives: a bioinformatic study. , 2012, Cellular and molecular biology.

[175]  N. Schormann,et al.  Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. , 2009, Acta crystallographica. Section D, Biological crystallography.

[176]  A. Anderson,et al.  Structure‐based approach to pharmacophore identification, in silico screening, and three‐dimensional quantitative structure–activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function , 2008, Proteins.

[177]  E. Oldfield,et al.  Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates. , 2014, Acta crystallographica. Section D, Biological crystallography.

[178]  Darrell E Hurt,et al.  Structure of Plasmodium falciparum dihydroorotate dehydrogenase with a bound inhibitor. , 2006, Acta crystallographica. Section D, Biological crystallography.

[179]  R J Fletterick,et al.  Structural determinants of specificity in the cysteine protease cruzain , 1997, Protein science : a publication of the Protein Society.

[180]  Inari Kursula,et al.  Crystal Structure of Triosephosphate Isomerase Complexed with 2-Phosphoglycolate at 0.83-Å Resolution* , 2003, The Journal of Biological Chemistry.

[181]  M. Liscovitch,et al.  Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells. , 2001, Anticancer research.

[182]  A. Fairlamb,et al.  Specificity of the trypanothione‐dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme , 2006, Molecular microbiology.

[183]  L. Delboni,et al.  The crystal structure of glucose-6-phosphate isomerase from Leishmania mexicana reveals novel active site features. , 2004, European journal of biochemistry.

[184]  C. Hill,et al.  Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani , 1999, The EMBO journal.

[185]  E. Oldfield,et al.  Binding of nitrogen‐containing bisphosphonates (N‐BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer , 2010, Proteins.

[186]  A. Mårtensson,et al.  Diversity of the sarco/endoplasmic reticulum Ca(2+)-ATPase orthologue of Plasmodium falciparum (PfATP6). , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[187]  N. Isaacs,et al.  Crystal structure of a Trypanosoma brucei metacaspase , 2012, Proceedings of the National Academy of Sciences.

[188]  B. Meunier,et al.  Docking Studies of Structurally Diverse Antimalarial Drugs Targeting PfATP6: No Correlation between in silico Binding Affinity and in vitro Antimalarial Activity. , 2009, ChemMedChem.

[189]  F. Buckner,et al.  Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. , 2011, Biochimie.

[190]  Paul W. Alexander,et al.  Complexes of Trypanosoma cruzi Sterol 14α-Demethylase (CYP51) with Two Pyridine-based Drug Candidates for Chagas Disease , 2013, The Journal of Biological Chemistry.

[191]  K. Fritz-Wolf,et al.  Redox regulation of Plasmodium falciparum ornithine δ-aminotransferase. , 2010, Journal of molecular biology.

[192]  Y. Urade,et al.  Structural insight into the stereoselective production of PGF2α by Old Yellow Enzyme from Trypanosoma cruzi. , 2011, Journal of biochemistry.

[193]  Jürgen Bosch,et al.  Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. , 2012, Journal of structural biology.

[194]  M. Costas,et al.  Different contribution of conserved amino acids to the global properties of triosephosphate isomerases , 2014, Proteins.

[195]  P. Alzari,et al.  The crystal structure of Trypanosoma cruzi arginine kinase , 2007, Proteins.

[196]  Kellen L. Olszewski,et al.  Crystal structure of arginase from Plasmodium falciparum and implications for L-arginine depletion in malarial infection . , 2010, Biochemistry.

[197]  Wolfgang Wende,et al.  Plasmodium falciparum glutathione S‐transferase—Structural and mechanistic studies on ligand binding and enzyme inhibition , 2006, Protein science : a publication of the Protein Society.

[198]  W. Setzer,et al.  The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. , 2012, Current medicinal chemistry.

[199]  Yongyuth Yuthavong,et al.  Combined Spatial Limitation around Residues 16 and 108 of Plasmodium falciparum Dihydrofolate Reductase Explains Resistance to Cycloguanil , 2012, Antimicrobial Agents and Chemotherapy.

[200]  S. Sahi,et al.  Leishmania donovani pteridine reductase 1: comparative protein modeling and protein–ligand interaction studies of the leishmanicidal constituents isolated from the fruits of Piper longum , 2012, Journal of Molecular Modeling.

[201]  S. Parthasarathy,et al.  Structure of the Plasmodium falciparum triosephosphate isomerase-phosphoglycolate complex in two crystal forms: characterization of catalytic loop open and closed conformations in the ligand-bound state. , 2002, Biochemistry.

[202]  H. Luecke,et al.  Dual role of the RNA substrate in selectivity and catalysis by terminal uridylyl transferases , 2007, Proceedings of the National Academy of Sciences.

[203]  A. Fairlamb,et al.  Development and validation of a cytochrome c-coupled assay for pteridine reductase 1 and dihydrofolate reductase , 2010, Analytical biochemistry.

[204]  M. Walkinshaw,et al.  The crystal structure of ATP-bound phosphofructokinase from Trypanosoma brucei reveals conformational transitions different from those of other phosphofructokinases. , 2009, Journal of molecular biology.

[205]  K. Ang,et al.  Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. , 2010, Journal of medicinal chemistry.

[206]  Brian J. Smith,et al.  Structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum. , 2005, Acta crystallographica. Section D, Biological crystallography.

[207]  C L Verlinde,et al.  Anion binding at the active site of trypanosomal triosephosphate isomerase. Monohydrogen phosphate does not mimic sulphate. , 1991, European journal of biochemistry.

[208]  R J Fletterick,et al.  A target within the target: probing cruzain's P1' site to define structural determinants for the Chagas' disease protease. , 2000, Structure.

[209]  A. Fairlamb,et al.  Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi☆ , 2010, Molecular and biochemical parasitology.

[210]  Yan Liu,et al.  Structure-activity relationships of orotidine-5'-monophosphate decarboxylase inhibitors as anticancer agents. , 2009, Journal of medicinal chemistry.

[211]  Maria Paola Costi,et al.  Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development , 2008, Proceedings of the National Academy of Sciences.

[212]  Yongyuth Yuthavong,et al.  Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target , 2012, Proceedings of the National Academy of Sciences.

[213]  A. Sali,et al.  Structural genomics of protein phosphatases , 2007, Journal of Structural and Functional Genomics.

[214]  M. Waterman,et al.  Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14α-Demethylase (CYP51) from Leishmania infantum* , 2011, The Journal of Biological Chemistry.

[215]  Dan Li,et al.  The application of in silico drug-likeness predictions in pharmaceutical research. , 2015, Advanced drug delivery reviews.

[216]  S. Croft,et al.  Leishmaniasis chemotherapy--challenges and opportunities. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[217]  Ajay N. Jain Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search , 2007, J. Comput. Aided Mol. Des..

[218]  D. Christianson,et al.  Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. , 2013, Archives of biochemistry and biophysics.

[219]  D. Vertommen,et al.  The crystal structure of Trypanosoma brucei enolase: visualisation of the inhibitory metal binding site III and potential as target for selective, irreversible inhibition. , 2003, Journal of molecular biology.

[220]  Luis G Valerio,et al.  In silico toxicology for the pharmaceutical sciences. , 2009, Toxicology and applied pharmacology.

[221]  R. S. Ferreira,et al.  Novel non-peptidic vinylsulfones targeting the S2 and S3 subsites of parasite cysteine proteases. , 2009, Bioorganic & medicinal chemistry letters.

[222]  F. Buckner,et al.  The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer. , 2011, Journal of molecular biology.

[223]  The in silico screening and X-ray structure analysis of the inhibitor complex of Plasmodium falciparum orotidine 5'-monophosphate decarboxylase. , 2012, Journal of biochemistry.

[224]  Y. Kitade,et al.  Crystal structure of S-adenosyl-L-homocysteine hydrolase from the human malaria parasite Plasmodium falciparum. , 2004, Journal of molecular biology.

[225]  A. Rodríguez‐Romero,et al.  Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. , 2004, Journal of molecular biology.

[226]  M. Yogavel,et al.  Iodide-SAD, SIR and SIRAS phasing for structure solution of a nucleosome assembly protein. , 2009, Acta crystallographica. Section D, Biological crystallography.

[227]  S. Cameron,et al.  The crystal structure of Leishmania major N5,N10-methylenetetrahydrofolate dehydrogenase/cyclohydrolase and assessment of a potential drug target☆ , 2012, Molecular and biochemical parasitology.

[228]  A. Fairlamb,et al.  Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate , 2006, Molecular microbiology.

[229]  Elizabeth Yuriev,et al.  Latest developments in molecular docking: 2010–2011 in review , 2013, Journal of molecular recognition : JMR.

[230]  J. Yuvaniyama,et al.  Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. , 2011, ACS chemical biology.

[231]  Jennifer Legac,et al.  Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design* , 2009, The Journal of Biological Chemistry.

[232]  A. Rodríguez‐Romero,et al.  Perturbation of the Dimer Interface of Triosephosphate Isomerase and its Effect on Trypanosoma cruzi , 2007, PLoS neglected tropical diseases.

[233]  J. Lafrance-Vanasse,et al.  Carboxy-terminus recruitment induced by substrate binding in eukaryotic fructose bis-phosphate aldolases. , 2007, Biochemistry.

[234]  V. Dubey,et al.  Footprinting of Inhibitor Interactions of In Silico Identified Inhibitors of Trypanothione Reductase of Leishmania Parasite , 2012, TheScientificWorldJournal.

[235]  C L Verlinde,et al.  Crystallographic and molecular modeling studies on trypanosomal triosephosphate isomerase: a critical assessment of the predicted and observed structures of the complex with 2-phosphoglycerate. , 1991, Journal of medicinal chemistry.

[236]  J. Steyaert,et al.  Vrije Universiteit Brussel Structure and mechanism of the 6-oxopurine nucleosidase from Trypanosoma brucei , 2010 .

[237]  W. Hol,et al.  Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct. , 2003, Journal of molecular biology.

[238]  M. P. Pinheiro,et al.  Novel insights for dihydroorotate dehydrogenase class 1A inhibitors discovery. , 2010, European journal of medicinal chemistry.

[239]  W. Hunter,et al.  Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation , 2012, Proceedings of the National Academy of Sciences.

[240]  P. Michels,et al.  Structural role of the active‐site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase , 2012, The FEBS journal.

[241]  Leonardo L. G. Ferreira,et al.  Molecular Docking and Structure-Based Drug Design Strategies , 2015, Molecules.

[242]  A. Fairlamb,et al.  Two Interacting Binding Sites for Quinacrine Derivatives in the Active Site of Trypanothione Reductase , 2004, Journal of Biological Chemistry.

[243]  A. Rosengarth,et al.  UTP-bound and Apo structures of a minimal RNA uridylyltransferase. , 2007, Journal of molecular biology.

[244]  M. Walkinshaw,et al.  `In crystallo' substrate binding triggers major domain movements and reveals magnesium as a co-activator of Trypanosoma brucei pyruvate kinase. , 2013, Acta crystallographica. Section D, Biological crystallography.

[245]  E. Oldfield,et al.  Solid-state NMR, crystallographic, and computational investigation of bisphosphonates and farnesyl diphosphate synthase-bisphosphonate complexes. , 2006, Journal of the American Chemical Society.

[246]  B. Bernstein,et al.  A bisubstrate analog induces unexpected conformational changes in phosphoglycerate kinase from Trypanosoma brucei. , 1998, Journal of molecular biology.

[247]  Jessica Holien,et al.  Improvements, trends, and new ideas in molecular docking: 2012–2013 in review , 2015, Journal of molecular recognition : JMR.

[248]  An improved crystal form of Plasmodium falciparum peptide deformylase , 2004, Protein science : a publication of the Protein Society.

[249]  Ian H. Gilbert,et al.  β-Branched acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. , 2011, Bioorganic & medicinal chemistry.

[250]  R. Gerardy-Schahn,et al.  Catalytic mechanism and allosteric regulation of UDP-glucose pyrophosphorylase from Leishmania major , 2013 .

[251]  A. Fairlamb,et al.  Kinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis. , 2006, The Biochemical journal.

[252]  Antje Rottmann,et al.  Modeling, mutagenesis, and structural studies on the fully conserved phosphate‐binding loop (Loop 8) of triosephosphate isomerase: Toward a new substrate specificity , 2001, Proteins.

[253]  K. Kain,et al.  Characterization of a new phosphatase from Plasmodium. , 2011, Molecular and biochemical parasitology.

[254]  David M. Shackleford,et al.  Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. , 2011, Journal of medicinal chemistry.

[255]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[256]  W. Setzer,et al.  Interactions of antiparasitic alkaloids with Leishmania protein targets: a molecular docking analysis. , 2013, Future medicinal chemistry.

[257]  K. Wilson,et al.  Structures of adenosine kinase from Trypanosoma brucei brucei. , 2014, Acta crystallographica. Section F, Structural biology communications.

[258]  D. Auld,et al.  The Trypanocidal Drug Suramin and Other Trypan Blue Mimetics Are Inhibitors of Pyruvate Kinases and Bind to the Adenosine Site* , 2011, The Journal of Biological Chemistry.

[259]  F. Buckner,et al.  Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs. , 2010, Journal of molecular biology.

[260]  J. Gamieldien,et al.  Practical Considerations in Virtual Screening and Molecular Docking , 2015, Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology.

[261]  A. Rodríguez‐Romero,et al.  Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[262]  Andrea Ilari,et al.  Molecular basis of antimony treatment in leishmaniasis. , 2009, Journal of medicinal chemistry.

[263]  L. Amzel,et al.  Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase. , 2012, Journal of medicinal chemistry.

[264]  J. Mucci,et al.  Trypanosoma cruzi trans-Sialidase in Complex with a Neutralizing Antibody: Structure/Function Studies towards the Rational Design of Inhibitors , 2012, PLoS pathogens.

[265]  N. Surolia,et al.  Structural basis for the functional and inhibitory mechanisms of β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) of Plasmodium falciparum. , 2011, Journal of structural biology.

[266]  W. Setzer,et al.  In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants , 2012, PLoS neglected tropical diseases.

[267]  E. Merritt,et al.  Crystal structure of dihydroorotate dehydrogenase from Leishmania donovani , 2008 .

[268]  Yongyuth Yuthavong,et al.  Insights into antifolate resistance from malarial DHFR-TS structures , 2003, Nature Structural Biology.

[269]  Anmol Chandele,et al.  Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. , 2011, Nature communications.

[270]  Y. Wan,et al.  Biological and Structural Characterization of Trypanosoma cruzi Phosphodiesterase C and Implications for Design of Parasite Selective Inhibitors* , 2012, The Journal of Biological Chemistry.

[271]  D. Rice,et al.  Biological Crystallography , 2022 .

[272]  J. Jez,et al.  Structure and Reaction Mechanism of Phosphoethanolamine Methyltransferase from the Malaria Parasite Plasmodium falciparum , 2011, The Journal of Biological Chemistry.

[273]  Giuliano Cecchi,et al.  Human African trypanosomiasis , 2017, The Lancet.

[274]  René Thomsen,et al.  MolDock: a new technique for high-accuracy molecular docking. , 2006, Journal of medicinal chemistry.

[275]  M. Waterman,et al.  Crystal Structures of Trypanosoma brucei Sterol 14α-Demethylase and Implications for Selective Treatment of Human Infections*♦ , 2009, The Journal of Biological Chemistry.

[276]  Anuj Sharma,et al.  Docking-based screening of natural product database in quest for dual site inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR) , 2014, Medicinal Chemistry Research.

[277]  K. Stuart,et al.  Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei , 2005, The EMBO journal.

[278]  J. Périé,et al.  Evidence for the two phosphate binding sites of an analogue of the thioacyl intermediate for the Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase-catalyzed reaction, from its crystal structure. , 2003, Biochemistry.

[279]  O. Santos-Filho,et al.  Inhibition of Leishmania (Leishmania) amazonensis and Rat Arginases by Green Tea EGCG, (+)-Catechin and (−)-Epicatechin: A Comparative Structural Analysis of Enzyme-Inhibitor Interactions , 2013, PloS one.

[280]  Joel S. Freundlich,et al.  Synthesis, biological activity, and X-ray crystal structural analysis of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 1: 4'-substituted triclosan derivatives. , 2006, Bioorganic & medicinal chemistry letters.

[281]  V. Yardley,et al.  Inhibition of Leishmania infantum Trypanothione Reductase by Azole‐Based Compounds: a Comparative Analysis with Its Physiological Substrate by X‐ray Crystallography , 2013, ChemMedChem.

[282]  J. McKerrow,et al.  Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-chagas agents. , 2013, Journal of medicinal chemistry.

[283]  Chris de Graaf,et al.  Discovery of novel Trypanosoma brucei phosphodiesterase B1 inhibitors by virtual screening against the unliganded TbrPDEB1 crystal structure. , 2013, Journal of medicinal chemistry.

[284]  M. Walkinshaw,et al.  Allosteric Mechanism of Pyruvate Kinase from Leishmania mexicana Uses a Rock and Lock Model* , 2010, The Journal of Biological Chemistry.

[285]  A. Wlodawer,et al.  Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum. , 2009, Journal of molecular biology.

[286]  K. Fritz-Wolf,et al.  Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2. , 2012, Molecular and biochemical parasitology.

[287]  A. Fairlamb,et al.  Chemical, genetic and structural assessment of pyridoxal kinase as a drug target in the African trypanosome , 2012, Molecular microbiology.

[288]  K. Read,et al.  Synthesis and Evaluation of α-Thymidine Analogues as Novel Antimalarials , 2012, Journal of medicinal chemistry.

[289]  R. Arni,et al.  Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: stability, oligomerization and structural determinants of nucleotide binding. , 2011, Molecular bioSystems.

[290]  R. Abagyan,et al.  Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop. , 1997, Protein engineering.

[291]  H. Purnomo,et al.  Tea leaves extracted as anti-malaria based on molecular docking PLANTS , 2013 .

[292]  R. Brun,et al.  In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase † , 2015, Molecules.

[293]  M. Waterman,et al.  Structural Insights into Inhibition of Sterol 14α-Demethylase in the Human Pathogen Trypanosoma cruzi* , 2010, The Journal of Biological Chemistry.

[294]  A. Fairlamb,et al.  The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 Å resolution , 1996, Protein science : a publication of the Protein Society.

[295]  Bradley E. Bernstein,et al.  Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation , 1997, Nature.

[296]  F. Avilés,et al.  The molecular analysis of Trypanosoma cruzi metallocarboxypeptidase 1 provides insight into fold and substrate specificity , 2008, Molecular microbiology.

[297]  David S Hartsough,et al.  Development of alpha-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. , 2005, Bioorganic & medicinal chemistry.

[298]  Ralf Blossey,et al.  Molecular docking as a popular tool in drug design, an in silico travel , 2016, Advances and applications in bioinformatics and chemistry : AABC.

[299]  W. Degrave,et al.  Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[300]  H. Balaram,et al.  Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design. , 1997, Structure.

[301]  J. Irwin,et al.  Docking Screens for Novel Ligands Conferring New Biology. , 2016, Journal of medicinal chemistry.

[302]  F. Buckner,et al.  Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. , 2011, Molecular and biochemical parasitology.

[303]  Elizabeth Yuriev,et al.  Challenges and advances in computational docking: 2009 in review , 2011, Journal of molecular recognition : JMR.

[304]  W. Hol,et al.  Crystal structure of Leishmania mexicana glycosomal glyceraldehyde-3-phosphate dehydrogenase in a new crystal form confirms the putative physiological active site structure. , 1998, Journal of molecular biology.

[305]  C. Jeffery,et al.  Crystal structure of phosphoglucose isomerase from Trypanosoma brucei complexed with glucose‐6‐phosphate at 1.6 Å resolution , 2009, Proteins.

[306]  Hening Lin,et al.  Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine. , 2011, ACS chemical biology.

[307]  W. Setzer,et al.  The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. , 2012, Current medicinal chemistry.

[308]  M. Gramiccia,et al.  Inhibitory Effect of Silver Nanoparticles on Trypanothione Reductase Activity and Leishmania infantum Proliferation. , 2011, ACS medicinal chemistry letters.

[309]  K. Wilson,et al.  The crystal structure of Trypanosoma cruzi dUTPase reveals a novel dUTP/dUDP binding fold. , 2004, Structure.

[310]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[311]  N. Schormann,et al.  Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase. , 2010, Bioorganic & medicinal chemistry.

[312]  U. Maran,et al.  Molecular property filters describing pharmacokinetics and drug binding. , 2012, Current medicinal chemistry.

[313]  M. Walkinshaw,et al.  Crystal structures of Leishmania mexicana phosphoglycerate mutase suggest a one-metal mechanism and a new enzyme subclass. , 2009, Journal of molecular biology.

[314]  D. Christianson,et al.  Binding of α,α-disubstituted amino acids to arginase suggests new avenues for inhibitor design. , 2011, Journal of medicinal chemistry.

[315]  D. Wirth,et al.  In Vitro Resistance Selections for Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors Give Mutants with Multiple Point Mutations in the Drug-binding Site and Altered Growth , 2014, The Journal of Biological Chemistry.

[316]  T. Earnest,et al.  Using fragment cocktail crystallography to assist inhibitor design of Trypanosoma brucei nucleoside 2-deoxyribosyltransferase. , 2006, Journal of medicinal chemistry.

[317]  Linda S. Brinen,et al.  Structures of Falcipain-2 and Falcipain-3 Bound to Small Molecule Inhibitors: Implications for Substrate Specificity‡ , 2009, Journal of medicinal chemistry.

[318]  K. Fritz-Wolf,et al.  Crystal structure of the Plasmodium falciparum thioredoxin reductase-thioredoxin complex. , 2013, Journal of molecular biology.

[319]  J. Dame,et al.  Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. , 2004, Biochemistry.

[320]  V. Fülöp,et al.  Crystal Structures of Trypanosoma brucei Oligopeptidase B Broaden the Paradigm of Catalytic Regulation in Prolyl Oligopeptidase Family Enzymes , 2013, PloS one.

[321]  R. Sankaranarayanan,et al.  Mechanism of chiral proofreading during translation of the genetic code , 2013, eLife.

[322]  António E. N. Ferreira,et al.  Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny. , 2008, Biochemistry.

[323]  Gordon A. Leonard,et al.  Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites , 2001, Nature Structural Biology.

[324]  M. Gelb,et al.  Anomalous differences of light elements in determining precise binding modes of ligands to glycerol-3-phosphate dehydrogenase. , 2002, Chemistry & biology.

[325]  S. Parthasarathy,et al.  Structures of Plasmodium falciparum triosephosphate isomerase complexed to substrate analogues: observation of the catalytic loop in the open conformation in the ligand-bound state. , 2002, Acta crystallographica. Section D, Biological crystallography.

[326]  P. Rathod,et al.  The crystal structure and activity of a putative trypanosomal nucleoside phosphorylase reveal it to be a homodimeric uridine phosphorylase. , 2010, Journal of molecular biology.

[327]  K. Wilson,et al.  The Crystal Structure of the Leishmania major Deoxyuridine Triphosphate Nucleotidohydrolase in Complex with Nucleotide Analogues, dUMP, and Deoxyuridine* , 2011, The Journal of Biological Chemistry.

[328]  A. Cayota,et al.  Crystal structure of the tryparedoxin peroxidase from the human parasite Trypanosoma cruzi. , 2005, Journal of structural biology.

[329]  M. Jagannadham,et al.  Molecular docking based inhibition of Trypanothione reductase activity by Taxifolin novel target for antileishmanial activity , 2012 .

[330]  D. Schmidt-Arras,et al.  The crystal structure of the MAP kinase LmaMPK10 from Leishmania major reveals parasite-specific features and regulatory mechanisms. , 2012, Structure.

[331]  Georg Weidenspointner,et al.  In vivo protein crystallization opens new routes in structural biology , 2012, Nature Methods.

[332]  W. Setzer,et al.  Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. , 2014, Journal of molecular graphics & modelling.

[333]  M. Walkinshaw,et al.  Sulphate removal induces a major conformational change in Leishmania mexicana pyruvate kinase in the crystalline state. , 2008, Journal of molecular biology.

[334]  M. Delarue,et al.  Three dimensional structure and implications for the catalytic mechanism of 6-phosphogluconolactonase from Trypanosoma brucei. , 2007, Journal of molecular biology.

[335]  J. Iulek,et al.  Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase from Y strain. , 2008, Biochemical and biophysical research communications.

[336]  Christopher P Austin,et al.  Identification and optimization of inhibitors of Trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB. , 2010, Journal of medicinal chemistry.

[337]  W. Azevedo,et al.  Anti-Trypanosoma cruzi activity of nicotinamide. , 2012, Acta tropica.

[338]  J. Bella,et al.  Pyruvate kinases have an intrinsic and conserved decarboxylase activity. , 2014, The Biochemical journal.

[339]  R. Furneaux,et al.  The 2.0 A structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor. , 1999, Biochemistry.

[340]  M. Gramiccia,et al.  A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition , 2011, Amino Acids.

[341]  Xu Shen,et al.  Structural and Functional Characterization of Falcipain-2, a Hemoglobinase from the Malarial Parasite Plasmodium falciparum* , 2006, Journal of Biological Chemistry.

[342]  G. Cordell,et al.  Molecular Docking and Binding Mode Analysis of Plant Alkaloids as in Vitro and in silico Inhibitors of Trypanothione Reductase from Trypanosoma cruzi , 2016, Natural product communications.

[343]  J. Wiesner,et al.  Structure of the (E)‐4‐hydroxy‐3‐methyl‐but‐2‐enyl‐diphosphate reductase from Plasmodium falciparum , 2013, FEBS letters.

[344]  C L Verlinde,et al.  Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. , 1995, Biochemistry.

[345]  W. Hunter,et al.  High-resolution structures of Trypanosoma brucei pteridine reductase ligand complexes inform on the placement of new molecular entities in the active site of a potential drug target. , 2010, Acta crystallographica. Section D, Biological crystallography.

[346]  M. P. Pinheiro,et al.  Crystal structure of dihydroorotate dehydrogenase from Leishmania major. , 2012, Biochimie.

[347]  Tudor I. Oprea,et al.  Novel chemical space exploration via natural products. , 2009, Journal of medicinal chemistry.

[348]  Bradley I. Coleman,et al.  Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model* , 2010, The Journal of Biological Chemistry.

[349]  David M. Shackleford,et al.  Pharmacological Characterization, Structural Studies, and In Vivo Activities of Anti-Chagas Disease Lead Compounds Derived from Tipifarnib , 2012, Antimicrobial Agents and Chemotherapy.

[350]  K. Kalani,et al.  In Silico and In Vivo Anti-Malarial Studies of 18β Glycyrrhetinic Acid from Glycyrrhiza glabra , 2013, PloS one.

[351]  P. Focia,et al.  Approaching the transition state in the crystal structure of a phosphoribosyltransferase. , 1998, Biochemistry.

[352]  L. Ribas de Pouplana,et al.  Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development. , 2013, Acta crystallographica. Section D, Biological crystallography.

[353]  D. Rigden,et al.  Structural flexibility in Trypanosoma brucei enolase revealed by X‐ray crystallography and molecular dynamics , 2007, The FEBS journal.

[354]  Pradeep Das,et al.  Computational Elucidation of Structural Basis for Ligand Binding with Leishmania donovani Adenosine Kinase , 2013, BioMed research international.

[355]  Eric Oldfield,et al.  Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: Implications for drug design , 2005, Proteins.

[356]  B. Dunn,et al.  Crystallographic evidence for noncoplanar catalytic aspartic acids in plasmepsin II resides in the Protein Data Bank. , 2009, Acta crystallographica. Section D, Biological crystallography.

[357]  F. Buckner,et al.  Distinct states of methionyl-tRNA synthetase indicate inhibitor binding by conformational selection. , 2012, Structure.

[358]  S. Macedo-Ribeiro,et al.  Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed α‐helix , 2002, EMBO reports.

[359]  A. Torres-Larios,et al.  Identification of Amino Acids that Account for Long-Range Interactions in Two Triosephosphate Isomerases from Pathogenic Trypanosomes , 2011, PloS one.

[360]  A. Harvey,et al.  The re-emergence of natural products for drug discovery in the genomics era , 2015, Nature Reviews Drug Discovery.

[361]  Edward W. Tate,et al.  N-Myristoyltransferase from Leishmania donovani: Structural and Functional Characterisation of a Potential Drug Target for Visceral Leishmaniasis , 2010, Journal of molecular biology.

[362]  E. Goldsmith,et al.  X-ray Structure Determination of Trypanosoma brucei Ornithine Decarboxylase Bound to d-Ornithine and to G418 , 2003, Journal of Biological Chemistry.

[363]  C. Nakamura,et al.  Natural products and Chagas' disease: a review of plant compounds studied for activity against Trypanosoma cruzi. , 2011, Natural product reports.

[364]  A. Harikishore,et al.  Small molecule Plasmodium FKBP35 inhibitor as a potential antimalaria agent , 2013, Scientific Reports.

[365]  Terry K. Smith,et al.  Structure-Based Design of Pteridine Reductase Inhibitors Targeting African Sleeping Sickness and the Leishmaniases† , 2009, Journal of medicinal chemistry.

[366]  S. Kyes,et al.  The crystal structure of superoxide dismutase from Plasmodium falciparum , 2006, BMC Structural Biology.

[367]  V. K. Gupta,et al.  In silico docking studies of bioactive natural plant products as putative DHFR antagonists , 2013, Medicinal Chemistry Research.

[368]  Junmei Wang,et al.  Structure – ADME relationship: still a long way to go? , 2008, Expert opinion on drug metabolism & toxicology.

[369]  '. FREDM.D.VELLIEUXa,et al.  Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[370]  P. Hoffmann,et al.  Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity , 2009, Proteins.

[371]  A. Cavalli,et al.  Design, synthesis, and biological and crystallographic evaluation of novel inhibitors of Plasmodium falciparum enoyl-ACP-reductase (PfFabI). , 2013, Journal of medicinal chemistry.