Dissipative optical bullets modeled by the cubic-quintic-septic complex Ginzburg-Landau equation with higher-order dispersions

Abstract We investigate the propagation of dissipative optical bullets under the combined influence of dispersion, diffraction, gain, loss, spectral filtering, Raman effect and cubic-quintic-septic nonlinearities. Using the Maxwell equations, we derive a basic equation modeling the propagation of ultrashort optical solitons in optical fiber, named the higher-order (3+1)D cubic-quintic-septic complex Ginzburg–Landau [(3+1)D CQS-CGL] equation. Considering this higher-order (3+1)D CQS-CGL equation, we use a variational approach to obtain a set of differential equations characterizing the variation of the pulse parameters in fiber optic-links. The variational equations that we obtained are investigated numerically in order to observe the behavior of pulse parameters along the optical fiber. A fully direct numerical simulation of the higher-order (3+1)D CQS-CGL equation finally tests the results of the variational approach. A good agreement between analytical and numerical methods is observed. Among different behaviors, bell-shaped dissipative light bullets, double, triple and quadruple bullet complexes are obtained under certain parameter values for anomalous, zero and normal chromatic dispersion regimes.

[1]  V. Škarka,et al.  Extension of the stability criterion for dissipative optical soliton solutions of a two-dimensional Ginzburg–Landau system generated from asymmetric inputs , 2008 .

[2]  K. Nakkeeran,et al.  Optimized Hermite-gaussian ansatz functions for dispersion-managed solitons , 2001 .

[3]  R. Boyd,et al.  Conical emission due to four-wave mixing enhanced by the ac Stark effect in self-trapped filaments of light. , 1982, Optics letters.

[4]  B. Malomed,et al.  Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses. , 2010, Physical review letters.

[5]  Propagation of femtosecond pulses in focusing nonlinear Kerr planar waveguides , 1996 .

[6]  B. Malomed,et al.  On multidimensional solitons and their legacy in contemporary Atomic, Molecular and Optical physics , 2016 .

[7]  Dawn A. Lott,et al.  Optical Solitons with Higher Order Dispersion by Semi-Inverse Variational Principle , 2010 .

[8]  Daniel R. Grischkowsky,et al.  Nonlinear Picosecond-Pulse Propagation Through Optical Fibers with Positive Group Velocity Dispersion , 1981 .

[9]  Boris A. Malomed,et al.  Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity , 1997 .

[10]  A Taflove,et al.  Direct time integration of Maxwell's equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons. , 1993, Optics letters.

[11]  K. Hizanidis,et al.  Propagation of chirped solitary pulses in optical transmission lines: perturbed variational approach , 2002 .

[12]  H. Gies Wilsonian effective action for SU(2) Yang-Mills theory with the Cho-Faddeev-Niemi-Shabanov decomposition , 2001, hep-th/0102026.

[13]  Enns,et al.  Bistable spheroidal optical solitons. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  B. Malomed,et al.  Two-dimensional dispersion-managed light bullets in Kerr media. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  B. A. Malomed,et al.  Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length , 2003 .

[16]  Malomed,et al.  Spatiotemporally localized solitons in resonantly absorbing bragg reflectors , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Nail Akhmediev,et al.  Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion , 1997 .

[18]  A Taflove,et al.  Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. , 1992, Optics letters.

[19]  Anjan Biswas,et al.  Optical soliton perturbation in a non-Kerr law media , 2008 .

[20]  Stabilization of three-dimensional light bullets by a transverse lattice in a Kerr medium with dispersion management , 2005, physics/0503058.

[21]  Gadi Fibich,et al.  Optical light bullets in a pure Kerr medium. , 2004 .

[22]  S Gatz,et al.  Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. , 1992, Optics letters.

[23]  B. Liu,et al.  Impact of phase on collision between vortex solitons in three-dimensional cubic-quintic complex Ginzburg-Landau equation. , 2014, Optics express.

[24]  Dissipative solitons with a Lagrangian approach , 2007 .

[25]  T. Kofané,et al.  Ultrashort Optical Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation with Higher-Order Terms(Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid mechanics) , 2008 .

[26]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[27]  Stationary and pulsating dissipative light bullets from a collective variable approach. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[29]  Srikanth Raghavan,et al.  Spatiotemporal solitons in inhomogeneous nonlinear media , 2000 .

[30]  S. Bhadra,et al.  Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages , 2008 .

[31]  B. Malomed,et al.  Two-dimensional solitary pulses in driven diffractive-diffusive complex Ginzburg-Landau equations , 2002, nlin/0205015.

[32]  Boris A. Malomed,et al.  Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity , 2000 .

[33]  B. Liu,et al.  Continuous generation of "light bullets" in dissipative media by an annularly periodic potential. , 2011, Optics express.

[34]  P. Grelu,et al.  Spatiotemporal optical solitons in nonlinear dissipative media: from stationary light bullets to pulsating complexes. , 2007, Chaos.

[35]  M. Kuzyk,et al.  Three-dimensional optical pulse simulation using the FDTD method , 2000 .

[36]  B. Malomed,et al.  Three-dimensional spinning solitons in the cubic-quintic nonlinear medium. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Ilaria Cristiani,et al.  Dispersive wave generation by solitons in microstructured optical fibers. , 2004, Optics express.

[38]  P. Grelu,et al.  Light bullets and dynamic pattern formation in nonlinear dissipative systems. , 2005, Optics express.

[39]  P. Grelu,et al.  Optical bullets and "rockets" in nonlinear dissipative systems and their transformations and interactions. , 2006, Optics express.

[40]  Karpman,et al.  Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  K. Beckwitt,et al.  Two-dimensional optical spatiotemporal solitons in quadratic media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Christian Jirauschek,et al.  Variational analysis of spatio-temporal pulse dynamics in dispersive Kerr media , 2002 .

[43]  G. Agrawal Effect of gain dispersion and stimulated Raman scattering on soliton amplification in fiber amplifiers. , 1991, Optics letters.

[44]  Boris A. Malomed,et al.  Interactions between two-dimensional solitons in the diffractive–diffusive Ginzburg–Landau equation with the cubic–quintic nonlinearity , 2009, 0904.0327.

[45]  M Segev,et al.  Integer and fractional angular momentum borne on self-trapped necklace-ring beams. , 2001, Physical review letters.

[46]  Alidou Mohamadou,et al.  Wave train generation of solitons in systems with higher-order nonlinearities. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  F. Wise,et al.  Measurement of fifth- and seventh-order nonlinearities of glasses , 2006 .

[48]  P. L. Kelley,et al.  Self-focusing of optical beams , 1965, International Quantum Electronics Conference, 2005..

[49]  Diana Anderson,et al.  Variational approach to nonlinear pulse propagation in optical fibers , 1983 .

[50]  Numerical simulations of light bullets using the full-vector time-dependent nonlinear Maxwell equations , 1997 .

[51]  J P Torres,et al.  Stable spinning optical solitons in three dimensions. , 2002, Physical review letters.

[52]  Song Jiang,et al.  Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity , 2003, Appl. Math. Lett..

[53]  K. Porsezian,et al.  Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity , 2010 .

[54]  V. Škarka,et al.  Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. , 2006, Physical review letters.

[55]  R. Baumbach,et al.  Correlated Electron Phenomena in Ce- and Pr-based Filled Skutterudite Arsenides and Antimonides , 2008 .

[56]  T. Kofané,et al.  A collective variable approach for optical solitons in the cubic–quintic complex Ginzburg–Landau equation with third-order dispersion , 2008 .

[57]  Hiroki Saito,et al.  Dynamically stabilized bright solitons in a two-dimensional bose-einstein condensate. , 2003, Physical review letters.

[58]  P. Tchofo Dinda,et al.  Collective variable theory for optical solitons in fibers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Agrawal Optical pulse propagation in doped fiber amplifiers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[60]  V. Pérez-García,et al.  n-body dynamics of stabilized vector solitons. , 2004, Chaos.

[61]  Richard W. Ziolkowski,et al.  Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time , 1993 .

[62]  Jinping Tian,et al.  Chirped Ultrashort Soliton-like Laser Pulse Form with Fourth-order Dispersion , 2005 .

[63]  Adrian Ankiewicz,et al.  Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[65]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[66]  Boris A. Malomed,et al.  Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity , 2002 .

[67]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[68]  Y J He,et al.  Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Y. Kivshar,et al.  Necklace-ring vector solitons. , 2001, Physical review letters.

[70]  Lederer,et al.  Three-dimensional walking spatiotemporal solitons in quadratic media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  V. Karpman Influence of high-order dispersion on self-focusing. I. Qualitative investigation , 1991 .