Ensuring color consistency across multiple cameras

Most multi-camera vision applications assume a single common color response for all cameras. However different cameras - even of the same type - can exhibit radically different color responses, and the differences can cause significant errors in scene interpretation. To address this problem we have developed a robust system aimed at inter-camera color consistency. Our method consists of two phases: an iterative closed-loop calibration phase that searches for the per-camera hardware register settings that best balance linearity and dynamic range, followed by a refinement phase that computes the per-camera parametric values for an additional software-based color mapping

[1]  Shree K. Nayar,et al.  What Can Be Known about the Radiometric Response from Images? , 2002, ECCV.

[2]  Mary Nielsen,et al.  The Creation of the sRGB ICC Profile , 1998, Color Imaging Conference.

[3]  Greg Welch,et al.  Achieving color uniformity across multi-projector displays , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[4]  Ruigang Yang,et al.  View-Dependent Pixel Coloring-A Physically-Based Approach for 2 D View Synthesis , 2003 .

[5]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[6]  Marc Levoy,et al.  High-speed videography using a dense camera array , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[7]  W. Brent Seales,et al.  Immersive teleconferencing: a new algorithm to generate seamless panoramic video imagery , 1999, MULTIMEDIA '99.

[8]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[9]  P. Diehl,et al.  Least-Squares Fitting , 1972 .

[10]  Fatih Porikli INTER-CAMERA COLOR CALIBRATION USING CROSS-CORRELATION MODEL FUNCTION , 2003 .

[11]  Marc Levoy,et al.  Using plane + parallax for calibrating dense camera arrays , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[12]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.

[13]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.

[14]  Ben J Hicks,et al.  SPIE - The International Society for Optical Engineering , 2001 .

[15]  Henry R. Kang Color Technology for Electronic Imaging Devices , 1997 .

[16]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[17]  Brian V. Funt,et al.  Camera characterization for color research , 2002 .

[18]  Fatih Murat Porikli,et al.  Inter-camera color calibration by correlation model function , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[19]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[20]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[21]  Ross Cutler,et al.  Practical calibrations for a real-time digital omnidirectional camera , 2001 .

[22]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[23]  D. Pascale RGB coordinates of the Macbeth ColorChecker , 2006 .

[24]  Ruigang Yang,et al.  View-dependent pixel coloring: a physically-based approach for two-dimensional view synthesis , 2003 .

[25]  Michael Goesele,et al.  New acquisition techniques for real objects and light sources in computer graphics , 2004 .

[26]  Thomas Young,et al.  On the theory of light and colours , 1967 .

[27]  Charles Poynton Poynton's Color FAQ , 2004 .

[28]  H. Helmholtz Ueber die Theorie der zusammengesetzten Farben , 1852 .