Robust topology optimisation of microstructural details without length scale separation - using a spectral coarse basis preconditioner

Abstract This paper applies topology optimisation to the design of structures with periodic and layered microstructural details without length scale separation, i.e. considering the complete macroscopic structure and its response, while resolving all microstructural details, as compared to the often used homogenisation approach. The approach takes boundary conditions into account and ensures connected and macroscopically optimised microstructures regardless of the difference in micro- and macroscopic length scales. This results in microstructures tailored for specific applications rather than specific properties. Manufacturability is further ensured by the use of robust topology optimisation. Dealing with the complete macroscopic structure and its response is computationally challenging as very fine discretisations are needed in order to resolve all microstructural details. Therefore, this paper shows the benefits of applying a contrast-independent spectral preconditioner based on the multiscale finite element method (MsFEM) to large structures with fully-resolved microstructural details. It is shown that a single preconditioner can be reused for many design iterations and used for several design realisations, in turn leading to massive savings in computational cost. The density-based topology optimisation approach combined with a Heaviside projection filter and a stochastic robust formulation is used on various problems, with both periodic and layered microstructures. The presented approach is shown to allow for the topology optimisation of very large problems in Matlab , specifically a problem with 26 million displacement degrees of freedom in 26 hours using a single computational thread.

[1]  Boyan S. Lazarov Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media , 2013, LSSC.

[2]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[3]  B. Lazarov,et al.  Parallel framework for topology optimization using the method of moving asymptotes , 2013 .

[4]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[5]  James K. Guest,et al.  Imposing maximum length scale in topology optimization , 2009 .

[6]  Y. Xie,et al.  Comparing optimal material microstructures with optimal periodic structures , 2013 .

[7]  B. Bourdin Filters in topology optimization , 2001 .

[8]  H. Rodrigues,et al.  Hierarchical optimization of material and structure , 2002 .

[9]  D. Tortorelli,et al.  Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity , 1994 .

[10]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[11]  P. Nakshatrala Nonlinear structural design using multiscale topology optimization , 2013 .

[12]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[13]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[14]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[15]  Yi Min Xie,et al.  Convergence of topological patterns of optimal periodic structures under multiple scales , 2012 .

[16]  O. Iliev,et al.  Multiscale finite element coarse spaces for the application to linear elasticity , 2013 .

[17]  Boyan Stefanov Lazarov,et al.  On multigrid-CG for efficient topology optimization , 2014 .

[18]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[19]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[20]  Michael Stingl,et al.  Efficient Two-Scale Optimization of Manufacturable Graded Structures , 2012, SIAM J. Sci. Comput..

[21]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[22]  Weihong Zhang,et al.  Scale‐related topology optimization of cellular materials and structures , 2006 .

[23]  Daniel A. Tortorelli,et al.  Nonlinear structural design using multiscale topology optimization. Part I: Static formulation , 2013 .

[24]  Yalchin Efendiev,et al.  Spectral Element Agglomerate Algebraic Multigrid Methods for Elliptic Problems with High-Contrast Coefficients , 2011 .

[25]  Panayot S. Vassilevski,et al.  Smoothed Aggregation Spectral Element Agglomeration AMG: SA-ρAMGe , 2011, LSSC.

[26]  O. Sigmund,et al.  Topology optimization considering material and geometric uncertainties using stochastic collocation methods , 2012 .

[27]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[28]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[29]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[30]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[31]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[32]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[33]  George I. N. Rozvany,et al.  On symmetry and non-uniqueness in exact topology optimization , 2011 .

[34]  S. Torquato,et al.  Composites with extremal thermal expansion coefficients , 1996 .

[35]  Pedro G. Coelho,et al.  Parallel computing techniques applied to the simultaneous design of structure and material , 2011, Adv. Eng. Softw..

[36]  H. Rodrigues,et al.  Numerical modeling of bone tissue adaptation--a hierarchical approach for bone apparent density and trabecular structure. , 2009, Journal of Biomechanics.

[37]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[38]  D. Braess Finite Elements: Finite Elements , 2007 .

[39]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[40]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[41]  G. W. Reddien,et al.  Projection Methods , 2021, Introduction to the Numerical Solution of Markov Chains.

[42]  James K. Guest,et al.  Eliminating beta-continuation from Heaviside projection and density filter algorithms , 2011 .

[43]  Ole Sigmund,et al.  Multiscale modeling and topology optimization of poroelastic actuators , 2012 .

[44]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[45]  P. Breitkopf,et al.  Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework , 2014 .

[46]  Ole Sigmund,et al.  Manufacturing tolerant topology optimization , 2009 .

[47]  O. Sigmund,et al.  Design of manufacturable 3D extremal elastic microstructure , 2014 .

[48]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[49]  Boyan Stefanov Lazarov,et al.  Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework , 2015 .

[50]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[51]  Yi Min Xie,et al.  Topology optimization of functionally graded cellular materials , 2013, Journal of Materials Science.

[52]  O. Sigmund,et al.  Filters in topology optimization based on Helmholtz‐type differential equations , 2011 .

[53]  Mattias Schevenels,et al.  Efficient reanalysis techniques for robust topology optimization , 2012 .