Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome

[1]  L. Farmer Comprehensive Guide to Autism , 2015 .

[2]  D. Spina,et al.  Inflammatory Lung Disease in Rett Syndrome , 2014, Mediators of inflammation.

[3]  Michaela K. Müller,et al.  The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome , 2014, Front. Cell. Neurosci..

[4]  Trevor A. Mori,et al.  Isoprostanes and neuroprostanes: total synthesis, biological activity and biomarkers of oxidative stress in humans. , 2013, Prostaglandins & other lipid mediators.

[5]  J. Ramirez,et al.  Breathing challenges in Rett Syndrome: Lessons learned from humans and animal models , 2013, Respiratory Physiology & Neurobiology.

[6]  S. Ackerman,et al.  Cholesterol metabolism and Rett syndrome pathogenesis , 2013, Nature Genetics.

[7]  A. Bird,et al.  Systemic Delivery of MeCP2 Rescues Behavioral and Cellular Deficits in Female Mouse Models of Rett Syndrome , 2013, The Journal of Neuroscience.

[8]  G. Valacchi,et al.  Fatty Acids and Autism Spectrum Disorders: The Rett Syndrome Conundrum , 2013 .

[9]  G. Valacchi,et al.  Scavenger receptor B1 post‐translational modifications in Rett syndrome , 2013, FEBS letters.

[10]  T. Rouault,et al.  Iron metabolism in the CNS: implications for neurodegenerative diseases , 2013, Nature Reviews Neuroscience.

[11]  G. Valacchi,et al.  Isoprostanes and 4-Hydroxy-2-nonenal: Markers or Mediators of Disease? Focus on Rett Syndrome as a Model of Autism Spectrum Disorder , 2013, Oxidative medicine and cellular longevity.

[12]  Pasko Rakic,et al.  Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. , 2013, Genes & development.

[13]  James C. Cronk,et al.  The role of microglia in brain maintenance: implications for Rett syndrome. , 2013, Trends in immunology.

[14]  S. Furini,et al.  Revealing the Complexity of a Monogenic Disease: Rett Syndrome Exome Sequencing , 2013, PloS one.

[15]  G. Valacchi,et al.  Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism , 2013, Brain and Development.

[16]  J. Chelly,et al.  MeCP2 deficiency is associated with impaired microtubule stability , 2013, FEBS letters.

[17]  M. Rastegar,et al.  Novel MeCP2 Isoform-Specific Antibody Reveals the Endogenous MeCP2E1 Expression in Murine Brain, Primary Neurons and Astrocytes , 2012, PloS one.

[18]  Rodney C. Samaco,et al.  Preclinical research in Rett syndrome: setting the foundation for translational success , 2012, Disease Models & Mechanisms.

[19]  M. D'Esposito,et al.  MeCP2 Dependent Heterochromatin Reorganization during Neural Differentiation of a Novel Mecp2-Deficient Embryonic Stem Cell Reporter Line , 2012, PloS one.

[20]  A. Bird,et al.  Disease Modeling Using Embryonic Stem Cells: MeCP2 Regulates Nuclear Size and RNA Synthesis in Neurons , 2012, Stem cells.

[21]  L. Opitz,et al.  Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome , 2012, Neurobiology of Disease.

[22]  A. Bird,et al.  Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. , 2012, Brain : a journal of neurology.

[23]  G. Valacchi,et al.  The role of oxidative stress in Rett syndrome: an overview , 2012, Annals of the New York Academy of Sciences.

[24]  M. D'Esposito,et al.  Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil , 2012, Genes & Nutrition.

[25]  James C. Cronk,et al.  Wild type microglia arrest pathology in a mouse model of Rett syndrome , 2012, Nature.

[26]  M. D'Esposito,et al.  F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome , 2011, Journal of Lipid Research.

[27]  Michael E. Greenberg,et al.  Rett Syndrome Mutation MeCP2 T158A Disrupts DNA Binding, Protein Stability and ERP Responses , 2011, Nature Neuroscience.

[28]  J. Raber,et al.  A role for glia in the progression of Rett’s syndrome , 2011, Nature.

[29]  M. D'Esposito,et al.  F₄-neuroprostanes mediate neurological severity in Rett syndrome. , 2011, Clinica chimica acta; international journal of clinical chemistry.

[30]  G. Valacchi,et al.  Oxidative stress in Rett syndrome: Natural history, genotype, and variants , 2011, Redox report : communications in free radical research.

[31]  M. D'Esposito,et al.  Increased levels of 4HNE-protein plasma adducts in Rett syndrome. , 2011, Clinical biochemistry.

[32]  R. Weksberg,et al.  Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation , 2011, Human molecular genetics.

[33]  C. Einspieler,et al.  Funktionelle Hirnentwicklung beim Rett Syndrom: frühe Auffälligkeiten und funktionsdiagnostische Besonderheiten , 2011 .

[34]  J. Roux,et al.  Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse , 2011, Neurobiology of Disease.

[35]  A. Percy,et al.  Experimental models of Rett syndrome based on Mecp2 dysfunction , 2011, Experimental biology and medicine.

[36]  W. Kaufmann,et al.  Rett syndrome: Revised diagnostic criteria and nomenclature , 2010, Annals of neurology.

[37]  L. Ferguson Chronic inflammation and mutagenesis. , 2010, Mutation research.

[38]  G. Valacchi,et al.  Unrecognized lung disease in classic Rett syndrome: a physiologic and high-resolution CT imaging study. , 2010, Chest.

[39]  D. Praticò The neurobiology of isoprostanes and Alzheimer's disease. , 2010, Biochimica et biophysica acta.

[40]  L. Ricceri,et al.  Early postnatal behavioral changes in the Mecp2‐308 truncation mouse model of Rett syndrome , 2010, Genes, brain, and behavior.

[41]  G. Valacchi,et al.  Systemic oxidative stress in classic Rett syndrome. , 2009, Free radical biology & medicine.

[42]  Jim Selfridge,et al.  The role of MeCP2 in the brain. , 2009, Annual review of cell and developmental biology.

[43]  G. Buonocore,et al.  Free iron, total F2‐isoprostanes and total F4‐neuroprostanes in a model of neonatal hypoxic–ischemic encephalopathy: neuroprotective effect of melatonin , 2009, Journal of pineal research.

[44]  H. Leonard,et al.  Is the girl with Rett syndrome normal at birth? , 2008, Developmental medicine and child neurology.

[45]  L. Ricceri,et al.  Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches , 2008, Behavioural pharmacology.

[46]  G. Poli,et al.  4‐Hydroxynonenal: A membrane lipid oxidation product of medicinal interest , 2008, Medicinal research reviews.

[47]  Stephen T. C. Wong,et al.  MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription , 2008, Science.

[48]  P. Maciel,et al.  Abnormal movements in Rett syndrome are present before the regression period: A case study , 2007, Movement disorders : official journal of the Movement Disorder Society.

[49]  Huda Y. Zoghbi,et al.  The Story of Rett Syndrome: From Clinic to Neurobiology , 2007, Neuron.

[50]  P. Maciel,et al.  Evidence for abnormal early development in a mouse model of Rett syndrome , 2007, Genes, brain, and behavior.

[51]  A. Bird,et al.  Reversal of Neurological Defects in a Mouse Model of Rett Syndrome , 2007, Science.

[52]  L. Ricceri,et al.  An altered neonatal behavioral phenotype in Mecp2 mutant mice , 2006, Neuroreport.

[53]  H. Zoghbi,et al.  Learning and Memory and Synaptic Plasticity Are Impaired in a Mouse Model of Rett Syndrome , 2006, The Journal of Neuroscience.

[54]  C. Einspieler,et al.  Abnormal general movements in girls with Rett disorder: The first four months of life , 2005, Brain and Development.

[55]  Rudolf Jaenisch,et al.  Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Einspieler,et al.  Is the Early Development of Girls with Rett Disorder Really Normal? , 2005, Pediatric Research.

[57]  H. Zoghbi,et al.  Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. , 2005, Human molecular genetics.

[58]  J. Gécz,et al.  Rett syndrome: clinical review and genetic update , 2005, Journal of Medical Genetics.

[59]  A. Kerr,et al.  Nurse recognition of early deviation in development in home videos of infants with Rett disorder. , 2003, Journal of intellectual disability research : JIDR.

[60]  M. Comporti,et al.  Ion trap tandem mass spectrometric determination of F2-isoprostanes. , 2003, Journal of mass spectrometry : JMS.

[61]  Juan I. Young,et al.  Mice with Truncated MeCP2 Recapitulate Many Rett Syndrome Features and Display Hyperacetylation of Histone H3 , 2002, Neuron.

[62]  R. Artuch,et al.  Oxidative stress in Rett syndrome , 2001, Brain and Development.

[63]  R. Jaenisch,et al.  Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice , 2001, Nature Genetics.

[64]  H. Zoghbi,et al.  Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 , 1999, Nature Genetics.

[65]  O. Kretz,et al.  Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety , 1999, Nature Genetics.

[66]  J. Strouboulis,et al.  Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription , 1998, Nature Genetics.

[67]  B. Halliwell,et al.  Free radicals in biology and medicine , 1985 .

[68]  A Rett,et al.  [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. , 1966, Wiener medizinische Wochenschrift.

[69]  G. Valacchi,et al.  4HNE protein adducts in autistic spectrum disorders: Rett syndrome and autism , 2014 .

[70]  N. Schröder,et al.  Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies. , 2013, Journal of Alzheimer's disease : JAD.

[71]  G. Valacchi,et al.  F(2)-Dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome. , 2013, Biochimie.

[72]  Christie M. Buchovecky,et al.  A suppressor screen in Mecp 2 mutant mice implicates cholesterol metabolism in Rett syndrome , 2013 .

[73]  Manjeet Singh,et al.  Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein. , 2010, Journal of Alzheimer's disease : JAD.

[74]  M. Comporti,et al.  Iron and Erythrocytes: Physiological and Pathophysiological Aspects , 2008 .

[75]  J. Chelly,et al.  Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized , 2006, Nature Reviews Genetics.

[76]  B. Hagberg Clinical manifestations and stages of Rett syndrome. , 2002, Mental retardation and developmental disabilities research reviews.

[77]  A. Bird,et al.  A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome , 2001, Nature Genetics.

[78]  P. Kovacic Free Radicals in Biology and Medicine , 1986 .