Sampling-Based Learning Control for Quantum Systems With Uncertainties

Robust control design for quantum systems has been recognized as a key task in the development of practical quantum technology. In this paper, we present a systematic numerical methodology of sampling-based learning control (SLC) for control design of quantum systems with uncertainties. The SLC method includes two steps of training and testing. In the training step, an augmented system is constructed using artificial samples generated by sampling uncertainty parameters according to a given distribution. A gradient flow-based learning algorithm is developed to find the control for the augmented system. In the process of testing, a number of additional samples are tested to evaluate the control performance, where these samples are obtained through sampling the uncertainty parameters according to a possible distribution. The SLC method is applied to three significant examples of quantum robust control, including state preparation in a three-level quantum system, robust entanglement generation in a two-qubit superconducting circuit, and quantum entanglement control in a two-atom system interacting with a quantized field in a cavity. Numerical results demonstrate the effectiveness of the SLC approach even when uncertainties are quite large, and show its potential for robust control design of quantum systems.

[1]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[2]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[3]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[4]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[5]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[6]  Constantin Brif,et al.  Robust control of quantum gates via sequential convex programming , 2013, ArXiv.

[7]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[8]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[9]  M. R. James,et al.  Risk-sensitive optimal control of quantum systems , 2004 .

[10]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[11]  Ian R. Petersen,et al.  Robust stability of uncertain quantum systems , 2012, 2012 American Control Conference (ACC).

[12]  Wei Cui,et al.  The entanglement dynamics of the bipartite quantum system: toward entanglement sudden death , 2009, 0910.5210.

[13]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[14]  Bo Qi,et al.  Further Results on Stabilizing Control of Quantum Systems , 2013, IEEE Transactions on Automatic Control.

[15]  Tommaso Calarco,et al.  Robust optimal quantum gates for Josephson charge qubits. , 2007, Physical review letters.

[16]  Yasunobu Nakamura,et al.  Quantum Oscillations in Two Coupled Charge Qubits , 2003 .

[17]  Boyan T Torosov,et al.  High-fidelity adiabatic passage by composite sequences of chirped pulses. , 2011, Physical review letters.

[18]  N. V. Vitanov,et al.  Optimum pulse shapes for stimulated Raman adiabatic passage , 2009, 0906.1989.

[19]  I. Petersen,et al.  Optimal Lyapunov-based quantum control for quantum systems , 2012, 1203.5373.

[20]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[21]  Guofeng Zhang,et al.  LQG/H∞ control of linear quantum stochastic systems , 2015, 2015 34th Chinese Control Conference (CCC).

[22]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[23]  Michael J. Biercuk,et al.  Robustness of composite pulses to time-dependent control noise , 2014, 1402.5174.

[24]  Francesca C. Chittaro,et al.  Adiabatic Control of the Schrödinger Equation via Conical Intersections of the Eigenvalues , 2011, IEEE Transactions on Automatic Control.

[25]  M. Allman,et al.  Tripartite interactions between two phase qubits and a resonant cavity , 2010, 1004.0026.

[26]  Matthew R. James,et al.  Quantum feedback networks and control: A brief survey , 2012, 1201.6020.

[27]  Rabitz,et al.  Robust optimal control of quantum molecular systems in the presence of disturbances and uncertainties. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[28]  Jun Zhang,et al.  Robust Control Pulses Design for Electron Shuttling in Solid-State Devices , 2014, IEEE Transactions on Control Systems Technology.

[29]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[30]  Herschel Rabitz,et al.  Quantum control landscapes , 2007, 0710.0684.

[31]  Claudio Altafini,et al.  Feedback Stabilization of Isospectral Control Systems on Complex Flag Manifolds: Application to Quantum Ensembles , 2007, IEEE Transactions on Automatic Control.

[32]  Ian R. Petersen,et al.  Notes on sliding mode control of two-level quantum systems , 2012, Autom..

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[35]  Bo Qi A two-step strategy for stabilizing control of quantum systems with uncertainties , 2013, Autom..

[36]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[37]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[38]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[39]  Ian R. Petersen,et al.  Sampling-based learning control for quantum systems with hamiltonian uncertainties , 2013, 52nd IEEE Conference on Decision and Control.

[40]  James Lam,et al.  Control Design of Uncertain Quantum Systems With Fuzzy Estimators , 2012, IEEE Transactions on Fuzzy Systems.

[41]  G. Wendin,et al.  Superconducting Quantum Circuits, Qubits and Computing , 2005 .

[42]  R. Tanas,et al.  Entangled states and collective nonclassical effects in two-atom systems , 2002, quant-ph/0302082.

[43]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[44]  Robert Kosut,et al.  Potential Design for Electron Transmission in Semiconductor Devices , 2013, IEEE Transactions on Control Systems Technology.

[45]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[46]  S Guérin,et al.  Robust quantum control by a single-shot shaped pulse. , 2013, Physical review letters.

[47]  Timothy F. Havel,et al.  Robust control of quantum information , 2003, quant-ph/0307062.

[48]  Herschel Rabitz,et al.  The Gradient Flow for Control of Closed Quantum Systems , 2013, IEEE Transactions on Automatic Control.

[49]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[50]  Ian R. Petersen,et al.  Entanglement Generation in Uncertain Quantum Systems Using Sampling-based Learning Control , 2014, IFAC Proceedings Volumes.

[51]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[52]  S. Guerin,et al.  Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses , 2009, 0908.0377.

[53]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[54]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[55]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[56]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[57]  C. Altafini Feedback stabilization of quantum ensembles: a global convergence analysis on complex flag manifolds , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[58]  Ian R. Petersen,et al.  Sampling-based learning control of inhomogeneous quantum ensembles , 2013, 1308.1454.

[59]  Ian R. Petersen,et al.  Sliding mode control of two-level quantum systems , 2010, Autom..

[60]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[61]  Ian R. Petersen,et al.  Robust manipulation of superconducting qubits in the presence of fluctuations , 2014, Scientific Reports.

[62]  Stéphane Guérin,et al.  Optimal adiabatic passage by shaped pulses: Efficiency and robustness , 2011 .

[63]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[64]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[65]  Adrian J Mulholland,et al.  Handbook of Theoretical and Computational Nanotechnology, Vol 6: Bioinformatics, Nanomedicine and Drug Design, Chapter 7 , 2006 .

[66]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[67]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[68]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[69]  Ian R. Petersen,et al.  Sampled-Data Design for Robust Control of a Single Qubit , 2012, IEEE Transactions on Automatic Control.

[70]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[71]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[72]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[73]  Andreas Wallraff,et al.  Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics , 2011 .

[74]  N. Khaneja,et al.  Control of inhomogeneous ensembles on the Bloch sphere , 2012, 1204.0061.

[75]  Yu. A. Pashkin,et al.  Quantum oscillations in two coupled charge qubits , 2002, Nature.

[76]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[77]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[78]  Herschel Rabitz,et al.  Gradient algorithm applied to laboratory quantum control , 2009 .

[79]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[80]  Michele Pavon,et al.  Robust steering of n-level quantum systems , 2004, IEEE Transactions on Automatic Control.

[81]  Ian R. Petersen,et al.  Robust entanglement control between two atoms in a cavity using sampling-based learning control , 2014, 53rd IEEE Conference on Decision and Control.

[82]  H. Ball,et al.  Experimental noise filtering by quantum control , 2014, Nature Physics.

[83]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2013 .

[84]  Naoki Yamamoto,et al.  Quantum Risk-Sensitive Estimation and Robustness , 2007, IEEE Transactions on Automatic Control.