A hybrid conjugate gradient method with descent property for unconstrained optimization

Abstract In this paper, based on some famous previous conjugate gradient methods, a new hybrid conjugate gradient method was presented for unconstrained optimization. The proposed method can generate decent directions at every iteration, moreover, this property is independent of the steplength line search. Under the Wolfe line search, the proposed method possesses global convergence. Medium-scale numerical experiments and their performance profiles are reported, which show that the proposed method is promising.

[1]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[2]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[3]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[4]  Gaohang Yu,et al.  Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property , 2008 .

[5]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[6]  DaiYuhong,et al.  A NONMONOTONE CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION , 2002 .

[7]  D. Touati-Ahmed,et al.  Efficient hybrid conjugate gradient techniques , 1990 .

[8]  N. Andrei Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization , 2009 .

[9]  Xiwen Lu,et al.  A modified PRP conjugate gradient method , 2009, Ann. Oper. Res..

[10]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[11]  Liying Liu,et al.  The convergence properties of some new conjugate gradient methods , 2006, Appl. Math. Comput..

[12]  Yuhong Dai Nonlinear Conjugate Gradient Methods , 2011 .

[13]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[14]  Guoyin Li,et al.  Global convergence of the Polak-Ribière-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems , 2008, Math. Comput..

[15]  C. Storey,et al.  Global convergence result for conjugate gradient methods , 1991 .

[16]  Yu-Hong Dai,et al.  A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search , 2013, SIAM J. Optim..

[17]  Zengxin Wei,et al.  The proof of the sufficient descent condition of the Wei-Yao-Liu conjugate gradient method under the strong Wolfe-Powell line search , 2007, Appl. Math. Comput..

[18]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[19]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[20]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[21]  L. Liao,et al.  New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .

[22]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[23]  Jin-Bao Jian,et al.  A sufficient descent Dai–Yuan type nonlinear conjugate gradient method for unconstrained optimization problems , 2013 .

[24]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[25]  Zengxin Wei,et al.  A note about WYL's conjugate gradient method and its applications , 2007, Appl. Math. Comput..

[26]  Ya-Xiang Yuan,et al.  An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization , 2001, Ann. Oper. Res..

[27]  Guoyin Li,et al.  New conjugacy condition and related new conjugate gradient methods for unconstrained optimization , 2007 .