A Practical Design for a Multivariable Proportional-Integral Controller in Industrial Applications

This paper proposes a robust proportional−integral (PI) controller design for multivariable complex processes to achieve both well-decoupled and well-damped output behavior. By reformulating PI-controlled processes in a way similar to the LQG/LTR control design problem, the proposed model matching technique in the first design stage successfully results in the robust PI controller with well-decoupled output behavior and sufficient stability. Moreover, control performance can be further improved to achieve well-damped responses by applying gain modification in a second design stage. Both simulated results using chemical processes and experimental results using a wind tunnel have proven the feasibility of the proposed PI controller design in real applications.

[1]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[2]  Mats Friman,et al.  Autotuning of Multiloop Control Systems , 1994 .

[3]  Dale E. Seborg,et al.  Optimal proportional plus integral control for regulator and tracking problems , 1985 .

[4]  R.A.M. Soeterboek,et al.  A predictive controller for the Mach number in a transonic wind tunnel , 1991, IEEE Control Systems.

[5]  Maciejowsk Multivariable Feedback Design , 1989 .

[6]  Seppo Pohjolainen Robust multivariable PI-controller for infinite dimensional systems , 1982 .

[7]  Sanjay Garg Turbofan Engine Control System Design Using the LQG/LTR Methodology , 1989, 1989 American Control Conference.

[8]  Siva S. Banda,et al.  Linear-quadratic-Gaussian with loop-transfer recovery methodology for an unmanned aircraft , 1985 .

[9]  Chang-Chieh Hang,et al.  Autotuning of multiloop proportional-integral controllers using relay feedback , 1993 .

[10]  Zhengzhi Han,et al.  Eigenstructure assignment using dynamical compensator , 1989 .

[11]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[12]  M. Athans,et al.  Robustness results in linear-quadratic Gaussian based multivariable control designs , 1981 .

[13]  A. Pope,et al.  High-Speed Wind Tunnel Testing , 1965 .

[14]  R. Mantz,et al.  Proportional plus integral MIMO controller for regulation and tracking with anti-wind-up features , 1993 .

[15]  Michael Athans A Tutorial on the LQG/LTR Method , 1986, 1986 American Control Conference.

[16]  Michael K. F. Knoop,et al.  Approximate model matching with multivariable PI-controllers , 1993, Autom..

[17]  Sigurd Skogestad,et al.  LV-control of a High-purity Distillation Column , 1987 .

[18]  G. Stein,et al.  The LQG/LTR procedure for multivariable feedback control design , 1987 .

[19]  Neil Munro,et al.  Procedure to achieve diagonal dominance using a PI/PID controller structure , 1989 .

[20]  Heikki N. Koivo,et al.  Multivariable tuning regulators for unknown systems , 1980, Autom..

[21]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[22]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[23]  Manfred Morari Robust stability of systems with integral control , 1983 .

[24]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[25]  Shyh Hong Hwang Geometric Interpretation and Measures of Dynamic Interactions in Multivariable Control Systems , 1995 .

[26]  A. Laub,et al.  Feedback properties of multivariable systems: The role and use of the return difference matrix , 1981 .

[27]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[28]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[29]  Tore Hägglund,et al.  Automatic Tuning and Adaptation for PID Controllers - A Survey , 1992 .

[30]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[31]  Frank L. Lewis,et al.  Applied Optimal Control and Estimation , 1992 .

[32]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .