Domain-free pure type systems

Pure type systems feature domain-specified λ-abstractions λx:A.M. We present a variant of pure type systems, which we call domain-free pure type systems, with domain-free λ-abstractions λx.M. We study the basic properties of domain-free pure type systems and establish their formal relationship with pure type systems.

[1]  Paola Giannini,et al.  Characterization of typings in polymorphic type discipline , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[2]  Aleksy Schubert Second-Order Unification and Type Inference for Church-Style Polymorphism , 1998, POPL.

[3]  John Hatcliff,et al.  CPS Translations and Applications: The Cube and Beyond , 1999, High. Order Symb. Comput..

[4]  Mark-Jan Nederhof,et al.  Modular proof of strong normalization for the calculus of constructions , 1991, Journal of Functional Programming.

[5]  Morten Heine Ssrensen,et al.  Strong Normalization from Weak Normalization in Typed -calculi , 1997 .

[6]  Gilles Barthe,et al.  A notion of classical pure type system , 1997, MFPS.

[7]  Thierry Coquand,et al.  A - Translation and Looping Combinators in Pure Type Systems , 1994, J. Funct. Program..

[8]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[9]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[10]  Alvaro Tasistro Substitution, record types and subtyping in type theory, with applications to the theory of programming , 1997 .

[11]  Morten Heine Sørensen,et al.  Strong Normalization from Weak Normalization in Typed Lambda-Calculi , 1997, Inf. Comput..

[12]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[13]  Gilles Barthe,et al.  Extensions of Pure Type Systems , 1995, TLCA.

[14]  Zhaohui Luo,et al.  Computation and reasoning - a type theory for computer science , 1994, International series of monographs on computer science.

[15]  J. H. Geuvers Logics and type systems , 1993 .

[16]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[17]  Lena Magnusson,et al.  The implementation of ALF : a proof editor based on Martin-Löf's monomorphic type theory with explicit substitution , 1994 .

[18]  Antonius J. C. Hurkens A Simplification of Girard's Paradox , 1995, TLCA.

[19]  H B Curry,et al.  Functionality in Combinatory Logic. , 1934, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. P. Barendregt Introduction to generalised type systems, invited talk , 1989 .

[21]  P. Severi Normalisation in lambda calculus and its relation to type inference , 1996 .

[22]  Frank Pfenning,et al.  Elf: A Meta-Language for Deductive Systems (System Descrition) , 1994, CADE.

[23]  Daniel Leivant,et al.  Polymorphic type inference , 1983, POPL '83.

[24]  Vincent van Oostrom,et al.  Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..

[25]  Hendrik Pieter Barendregt,et al.  Introduction to generalized type systems , 1991, Journal of Functional Programming.

[26]  Andrew W. Appel,et al.  Compiling with Continuations , 1991 .

[27]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[28]  Herman Geuvers,et al.  On the Church-Rosser property for expressive type systems and its consequences for their metatheoretic study , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[29]  Luigi Liquori,et al.  Comparing Cubes , 1994, LFCS.

[30]  Gilles Dowek,et al.  The Undecidability of Typability in the Lambda-Pi-Calculus , 1993, TLCA.