On Heuristics for Determining the Thickness of a Graph

We present an empirical analysis of some heuristics for the graph thickness problem, i.e., decomposing a graph into the minimum number of planar subgraphs. The problem has applications in database systems, e.g., the layout of E-R diagrams. The heuristics are based on some algorithms for finding a maximal planar subgraph of a nonplanar graph. Empirical results show that a randomized heuristic is a practical tool for solving this problem. We also improve upon a previously derived upper bound for the thickness of a graph with respect to its size.

[1]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[2]  Gary L. Hogg,et al.  A review of graph theory application to the facilities layout problem , 1987 .

[3]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[4]  M. Kleinert Die dicke des n-dimensionalen Würfel-graphen , 1967 .

[5]  J Mayer,et al.  Décomposition de K16 en Trois Graphes Planaires , 1972 .

[6]  Edward R. Scheinerman,et al.  On the thickness and arboricity of a graph , 1991, J. Comb. Theory, Ser. B.

[7]  M.N.S. Swamy,et al.  O(n2) algorithms for graph planarization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Brian Kernighan,et al.  An efficient heuristic for partitioning graphs , 1970 .

[9]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[10]  G. Kant An O(n2) maximal planarization algorithm based on PQ-trees , 1992 .

[11]  V B Alekseev,et al.  THE THICKNESS OF AN ARBITRARY COMPLETE GRAPH , 1976 .

[12]  L. Beineke,et al.  The Thickness of the Complete Graph , 1965, Canadian Journal of Mathematics.

[13]  Frank Harary,et al.  Graph Theory , 2016 .

[14]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  John H. Halton,et al.  On the thickness of graphs of given degree , 1991, Inf. Sci..

[16]  Norishige Chiba,et al.  A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..

[17]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[18]  J. Moon,et al.  On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Carlo Batini,et al.  Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..