On Heuristics for Determining the Thickness of a Graph
暂无分享,去创建一个
[1] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[2] Gary L. Hogg,et al. A review of graph theory application to the facilities layout problem , 1987 .
[3] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[4] M. Kleinert. Die dicke des n-dimensionalen Würfel-graphen , 1967 .
[5] J Mayer,et al. Décomposition de K16 en Trois Graphes Planaires , 1972 .
[6] Edward R. Scheinerman,et al. On the thickness and arboricity of a graph , 1991, J. Comb. Theory, Ser. B.
[7] M.N.S. Swamy,et al. O(n2) algorithms for graph planarization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[8] Brian Kernighan,et al. An efficient heuristic for partitioning graphs , 1970 .
[9] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.
[10] G. Kant. An O(n2) maximal planarization algorithm based on PQ-trees , 1992 .
[11] V B Alekseev,et al. THE THICKNESS OF AN ARBITRARY COMPLETE GRAPH , 1976 .
[12] L. Beineke,et al. The Thickness of the Complete Graph , 1965, Canadian Journal of Mathematics.
[13] Frank Harary,et al. Graph Theory , 2016 .
[14] Anthony Mansfield,et al. Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.
[15] John H. Halton,et al. On the thickness of graphs of given degree , 1991, Inf. Sci..
[16] Norishige Chiba,et al. A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..
[17] Brian W. Kernighan,et al. An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..
[18] J. Moon,et al. On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Carlo Batini,et al. Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..